【題目】已知函數(shù)
(1)當時,求不等式的解集;
(2)若,且對任意,恒成立,求的最小值.
【答案】(1);(2)1.
【解析】
(1) 當時,求出分段函數(shù),然后可以選擇數(shù)形結(jié)合求解或選擇解不等式組;
(2)當時,化簡分段函數(shù)得
可以得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增,然后利用最值分析法,即可求出參數(shù)的最小值.
(1)當時,,即,
解法一:作函數(shù)的圖象,它與直線的交點為,
所以,的解集的解集為.
解法2:原不等式等價于 或 或,
解得:或無解或,
所以,的解集為.
(2).
則
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增.
所以當時,取得最小值,.
因為對,恒成立,
所以.
又因為,
所以,
解得 (不合題意).
所以的最小值為1.
科目:高中數(shù)學 來源: 題型:
【題目】某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個點A、B、C、A1、、B1、C1上各裝一個燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個的安裝方法共有 種(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面五邊形ABCDE中,AB∥CE,且AE=2,∠AEC=60°,CD=ED=,cos∠EDC=.將△CDE沿CE折起,使點D移動到P的位置,且AP=,得到四棱錐P-ABCE.
(1)求證:AP⊥平面ABCE;
(2)記平面PAB與平面PCE相交于直線l,求證:AB∥l.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有一款智能學習APP,學習內(nèi)容包含文章學習和視頻學習兩類,且這兩類學習互不影響.已知該APP積分規(guī)則如下:每閱讀一篇文章積1分,每日上限積5分;觀看視頻累計3分鐘積2分,每日上限積6分.經(jīng)過抽樣統(tǒng)計發(fā)現(xiàn),文章學習積分的概率分布表如表1所示,視頻學習積分的概率分布表如表2所示.
(1)現(xiàn)隨機抽取1人了解學習情況,求其每日學習積分不低于9分的概率;
(2)現(xiàn)隨機抽取3人了解學習情況,設(shè)積分不低于9分的人數(shù)為,求的概率分布及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】揚州大學數(shù)學系有6名大學生要去甲、乙兩所中學實習,每名大學生都被隨機分配到兩所中學的其中一所.
(1)求6名大學生中至少有1名被分配到甲學校實習的概率;
(2)設(shè),分別表示分配到甲、乙兩所中學的大學生人數(shù),記,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:x+y-6=0,過直線上一點P作圓x2+y2=4的切線,切點分別為A,B,則四邊形PAOB面積的最小值為______,此時四邊形PAOB外接圓的方程為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“綠水青山就是金山銀山”,“建設(shè)美麗中國”已成為新時代中國特色社會主義生態(tài)文明建設(shè)的重要內(nèi)容,某班在一次研學旅行活動中,為了解某苗圃基地的柏樹幼苗生長情況,在這些樹苗中隨機抽取了120株測量高度(單位:),經(jīng)統(tǒng)計,樹苗的高度均在區(qū)間內(nèi),將其按,,,,,分成6組,制成如圖所示的頻率分布直方圖.據(jù)當?shù)匕貥涿缟L規(guī)律,高度不低于的為優(yōu)質(zhì)樹苗.
(1)求圖中的值;
(2)已知所抽取的這120株樹苗來自于,兩個試驗區(qū),部分數(shù)據(jù)如列聯(lián)表:
試驗區(qū) | 試驗區(qū) | 合計 | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計 |
將列聯(lián)表補充完整,并判斷是否有99.9%的把握認為優(yōu)質(zhì)樹苗與,兩個試驗區(qū)有關(guān)系,并說明理由;
(3)用樣本估計總體,若從這批樹苗中隨機抽取4株,其中優(yōu)質(zhì)樹苗的株數(shù)為,求的分布列和數(shù)學期望.
附:參考公式與參考數(shù)據(jù):,其中
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形中,,過點作交于點,以為折痕把折起,當幾何體的的體積最大時,則下列命題中正確的個數(shù)是( )
①
②∥平面
③與平面所成的角等于與平面所成的角
④與所成的角等于與所成的角
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三個校區(qū)分別位于扇形OAB的三個頂點上,點Q是弧AB的中點,現(xiàn)欲在線段OQ上找一處開挖工作坑P(不與點O,Q重合),為小區(qū)鋪設(shè)三條地下電纜管線PO,PA,PB,已知OA=2千米,∠AOB=,記∠APQ=θrad,地下電纜管線的總長度為y千米.
(1)將y表示成θ的函數(shù),并寫出θ的范圍;
(2)請確定工作坑P的位置,使地下電纜管線的總長度最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com