【題目】設(shè)函數(shù).
(1)請(qǐng)作出該函數(shù)在長(zhǎng)度為一個(gè)周期的閉區(qū)間的大致圖象;
(2)試判斷該函數(shù)的奇偶性,并運(yùn)用函數(shù)的奇偶性定義說(shuō)明理由;
(3)求該函數(shù)的單調(diào)遞增區(qū)間.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3).
【解析】
(1)用五點(diǎn)法作圖,作出該函數(shù)在長(zhǎng)度為一個(gè)周期的閉區(qū)間的大致圖象.(2)利用正弦函數(shù)的奇偶性作出判斷.(2)利用正弦函數(shù)的單調(diào)性,求函數(shù)單調(diào)遞增區(qū)間.
(1)函數(shù)f(x)=sin2x+cos2x=sin(2x+),
列表:
2x+ | 0 | π |
| 2π | |
x | ﹣ | ||||
f(x) | 0 | 0 | ﹣ | 0 |
作圖:
(2)該函數(shù)為非奇非偶,
∵f(﹣x)=sin(﹣2x+),而f(x)=sin(2x+),
﹣f(x)=﹣sin(2x+),
∴f(﹣x)≠f(x),且f(x)≠﹣f(x),故f(x)為非奇非偶函數(shù).
(3)令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,
可得它的增區(qū)間為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列滿(mǎn)足: ,且 ,其前n項(xiàng)和.
(1)求證:為等比數(shù)列;
(2)記為數(shù)列的前n項(xiàng)和.
(i)當(dāng)時(shí),求;
(ii)當(dāng)時(shí),是否存在正整數(shù),使得對(duì)于任意正整數(shù),都有?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E、F(E與A、D不重合)分別在棱AD,BD上,且EF⊥AD. 求證:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)在處的切線方程;
(2)當(dāng)時(shí),函數(shù)有兩個(gè)極值點(diǎn),求的取值范圍;
(3)若在點(diǎn)處的切線與軸平行,且函數(shù)在時(shí),其圖象上每一點(diǎn)處切線的傾斜角均為銳角,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)請(qǐng)指出函數(shù)的定義域、周期性和奇偶性;(不必證明)
(2)請(qǐng)以正弦函數(shù)的性質(zhì)為依據(jù),并運(yùn)用函數(shù)的單調(diào)性定義證明:在區(qū)間上單調(diào)遞減.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是樣本容量為200的頻率分布直方圖.根據(jù)樣本的頻率分布直方圖估計(jì),樣本數(shù)落在[6,10]內(nèi)的頻數(shù)為 ,數(shù)據(jù)落在(2,10)內(nèi)的概率約為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列的前項(xiàng)和為,若數(shù)列的各項(xiàng)按如下規(guī)律排列:,,,,,,,,,,…,,, …,,…有如下運(yùn)算和結(jié)論:①;②數(shù)列,,,,…是等比數(shù)列;③數(shù)列,,,,…的前項(xiàng)和為;④若存在正整數(shù),使,,則.其中正確的結(jié)論是_____.(將你認(rèn)為正確的結(jié)論序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=2,點(diǎn)M,N分別是邊AB,CD上的點(diǎn),且MN∥BC,.若將矩形ABCD沿MN折起使其形成60°的二面角(如圖).
(1)求證:平面CND⊥平面AMND;
(2)求直線MC與平面AMND所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com