【題目】已知函數(shù)

1)當(dāng)時,求函數(shù)的極值;

2)若對于任意實數(shù),當(dāng)時,函數(shù)的最大值為,求實數(shù)的取值范圍.

【答案】1)極大值為,極小值為.(2

【解析】

1)當(dāng)時,,求其導(dǎo)函數(shù),由導(dǎo)函數(shù)在不同區(qū)間內(nèi)的符號判斷原函數(shù)的單調(diào)性;

2)由題意.當(dāng)時,由原函數(shù)的單調(diào)性可得不存在實數(shù),使得當(dāng)時,函數(shù)的最大值為b);當(dāng)時,令,有,,然后分三類求解.

解:(1)當(dāng)時,,則

整理得,

當(dāng)變化時,變化如下表:

極大值

極小值

由上表知函數(shù)的極大值為,極小值為.

2)由題意,

1°當(dāng)時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減,此時,不存在實數(shù),使得當(dāng)時,函數(shù)的最大值為.

2°當(dāng)時,令,有,

①當(dāng)時,函數(shù)上單調(diào)遞增,顯然符合題意.

②當(dāng)時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減,處取得極大值且,只需,解得,又,所以此時實數(shù)的取值范圍是.

③當(dāng)時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減,要存在實數(shù),使得當(dāng)時,函數(shù)的最大值為,需

代入化簡得

,因為恒成立,

故恒有,所以時,恒成立,

綜上,實數(shù)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).設(shè)的交點為,當(dāng)變化時,的軌跡為曲線

1)求的普通方程;

2)設(shè)為圓上任意一點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)求函數(shù)的最大值;

2)證明:函數(shù)有兩個極值點,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若是函數(shù)的零點,是函數(shù)的零點.

1)比較的大。

2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P為直線上任意一點,,M為平面內(nèi)一點,且.

(Ⅰ)求點M的軌跡E的方程;

(Ⅱ)過點P作曲線E的切線,切點分別是.,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠新購置甲、乙兩種設(shè)備,分別生產(chǎn)AB兩種產(chǎn)品,為了解這兩種產(chǎn)品的質(zhì)量,隨機抽取了200件進行質(zhì)量檢測,得到質(zhì)量指標(biāo)值的頻數(shù)統(tǒng)計表如下:

質(zhì)量指標(biāo)值

合計

A產(chǎn)品頻數(shù)

2

6

a

32

20

10

80

B產(chǎn)品頻數(shù)

12

24

b

27

15

6

n

產(chǎn)品質(zhì)量2×2列聯(lián)表

產(chǎn)品質(zhì)量高

產(chǎn)品質(zhì)量一般

合計

A產(chǎn)品

B產(chǎn)品

合計

附:

1)求a,b,n的值,并估計A產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù);

2)若質(zhì)量指標(biāo)值大于50,則說明該產(chǎn)品質(zhì)量高,否則說明該產(chǎn)品質(zhì)量一般.請根據(jù)頻數(shù)表完成列聯(lián)表,并判斷是否有的把握認(rèn)為質(zhì)量高低與引入甲、乙設(shè)備有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線.直線為參數(shù)),點的坐標(biāo)為.

1)寫出曲線的參數(shù)方程,直線的普通方程;

2)若直線與曲線相交于、兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,左頂點為,離心率為,點是橢圓上的動點,的面積的最大值為.

(1)求橢圓的方程;

(2)設(shè)經(jīng)過點的直線與橢圓相交于不同的兩點,,線段的中垂線為.若直線與直線相交于點,與直線相交于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),曲線上異于原點的兩點,所對應(yīng)的參數(shù)分別為.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)當(dāng)時,直線平分曲線,求的值;

2)當(dāng)時,若,直線被曲線截得的弦長為,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案