設F是橢圓的右焦點,橢圓上的點與點F的最大距離為M,最小距離為N,則橢圓
上與點F的距離等于的點的坐標是                                 (   )
A.B.C.D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點(x, y) 在曲線C上,將此點的縱坐標變?yōu)樵瓉淼?倍,對應的橫坐標不變,得到的點滿足方程;定點M(2,1),平行于OM的直線在y軸上的截距為m(m≠0),直線與曲線C交于A、B兩個不同點.
(1)求曲線的方程;             
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線的漸近線方程為,焦距為,這雙曲線的方程為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(本小題滿分12分)
設點M、N分別是不等邊△ABC的重心與外心,已知,且.
(1)求動點C的軌跡E;
(2)若直線與曲線E交于不同的兩點P、Q,且滿足,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本小題滿分12分
的內(nèi)切圓與三邊的切點分別為,已知,內(nèi)切圓圓心,設點的軌跡為.

(1)求的方程;
(2)過點的動直線交曲線于不同的兩點(點軸的上方),問在軸上是否存在一定點不與重合),使恒成立,若存在,試求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線與橢圓共焦點,且以為漸近線,求雙曲線方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸的一個端點到右焦點的距離為.
(1)求橢圓C的方程;
(2)設直線l與橢圓c交于A、B兩點,坐標原點O到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.與雙曲線有共同的漸近線,且經(jīng)過點的雙曲線的一個焦點到一條漸近線的距離是                                                 (    )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

14.已知線段AB的端點B的坐標為(4,0),端點A在圓x2 + y2 = 1上運動,則線段AB的中點的軌跡方程為           

查看答案和解析>>

同步練習冊答案