【題目】年底某購物網(wǎng)站為了解會(huì)員對(duì)售后服務(wù)(包括退貨、換貨、維修等)的滿意度,從年下半年的會(huì)員中隨機(jī)調(diào)查了個(gè)會(huì)員,得到會(huì)員對(duì)售后服務(wù)的滿意度評(píng)分如下:

根據(jù)會(huì)員滿意度評(píng)分,將會(huì)員的滿意度從低到高分為三個(gè)等級(jí):

滿意度評(píng)分

低于

分到

不低于

滿意度等級(jí)

不滿意

比較滿意

非常滿意

(1)根據(jù)這個(gè)會(huì)員的評(píng)分,估算該購物網(wǎng)站會(huì)員對(duì)售后服務(wù)比較滿意和非常滿意的頻率;

(2)以(1)中的頻率作為概率,假設(shè)每個(gè)會(huì)員的評(píng)價(jià)結(jié)果相互獨(dú)立.

(i)若從下半年的所有會(huì)員中隨機(jī)選取個(gè)會(huì)員,求恰好一個(gè)評(píng)分比較滿意,另一個(gè)評(píng)分非常滿意的概率;

(ii)若從下半年的所有會(huì)員中隨機(jī)選取個(gè)會(huì)員,記評(píng)分非常滿意的會(huì)員的個(gè)數(shù)為,求的分布列,數(shù)學(xué)期望及方差.

【答案】(1)可估算該購物網(wǎng)店會(huì)員對(duì)售后服務(wù)比較滿意和非常滿意的頻率分別為;(2)i0.272;(ii見解析.

【解析】試題分析: (1)由給出的個(gè)數(shù)據(jù)可得,非常滿意的個(gè)數(shù)為,不滿意的個(gè)數(shù)為,比較滿意的個(gè)數(shù)為,由此可估算該購物網(wǎng)站會(huì)員對(duì)售后服務(wù)比較滿意和非常滿意的頻率;

(2)記“恰好一個(gè)評(píng)分比較滿意,另一個(gè)評(píng)分非常滿意”為事件,則.

(ii)的可能取值為,由題意,隨機(jī)變量

由此能求出的分布列,數(shù)學(xué)期望及方差.

試題解析:(1)由給出的個(gè)數(shù)據(jù)可得,非常滿意的個(gè)數(shù)為,不滿意的個(gè)數(shù)為,比較滿意的個(gè)數(shù)為

,

可估算該購物網(wǎng)店會(huì)員對(duì)售后服務(wù)比較滿意和非常滿意的頻率分別為

2)(i)記“恰好一個(gè)評(píng)分比較滿意,另一個(gè)評(píng)分非常滿意”為事件,則.

ii的可能取值為,

,

,

,

,

的分布列為

由題可知.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 恰有兩個(gè)零點(diǎn),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計(jì)劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面立角坐標(biāo)系中,過點(diǎn)的圓的圓心軸上,且與過原點(diǎn)傾斜角為的直線相切.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)點(diǎn)在直線上,過點(diǎn)作圓的切線、,切點(diǎn)分別為、,求經(jīng)過、、四點(diǎn)的圓所過的定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ex﹣ax2﹣2x+b(e為自然對(duì)數(shù)的底數(shù),a,b∈R).
(Ⅰ)設(shè)f′(x)為f(x)的導(dǎo)函數(shù),證明:當(dāng)a>0時(shí),f′(x)的最小值小于0;
(Ⅱ)若a<0,f(x)>0恒成立,求符合條件的最小整數(shù)b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x|+|x﹣1|.
(Ⅰ)若f(x)≥|m﹣1|恒成立,求實(shí)數(shù)m的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實(shí)數(shù)a,b滿足a2+b2=M,證明:a+b≥2ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:

超市

A

B

C

D

E

F

G

廣告費(fèi)支出

1

2

4

6

11

13

19

銷售額

19

32

40

44

52

53

54

1)若用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

2)用二次函數(shù)回歸模型擬合的關(guān)系,可得回歸方程:,

經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的分別約為,請(qǐng)用說明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)超市廣告費(fèi)支出為3萬元時(shí)的銷售額.

參數(shù)數(shù)據(jù)及公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】氣象意義上從春季進(jìn)入夏季的標(biāo)志為連續(xù)5天的日平均溫度均不低于22℃.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù):(記錄數(shù)據(jù)都是正整數(shù))

①甲地5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;

②乙地5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;

③丙地5個(gè)數(shù)據(jù)中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8.

則肯定進(jìn)入夏季的地區(qū)有_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班在一次個(gè)人投籃比賽中,記錄了在規(guī)定時(shí)間內(nèi)投進(jìn)個(gè)球的人數(shù)分布情況:

進(jìn)球數(shù)(個(gè))

0

1

2

3

4

5

投進(jìn)個(gè)球的人數(shù)(人)

1

2

7

2

其中對(duì)應(yīng)的數(shù)據(jù)不小心丟失了,已知進(jìn)球3個(gè)或3個(gè)以上,人均投進(jìn)4個(gè)球;進(jìn)球5個(gè)或5個(gè)以下,人均投進(jìn)2.5個(gè)球.

(1)投進(jìn)3個(gè)球和4個(gè)球的分別有多少人?

(2)從進(jìn)球數(shù)為3,4,5的所有人中任取2人,求這2人進(jìn)球數(shù)之和為8的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案