四面體ABCD中,有如下命題:①若AC⊥BD,AB⊥CD,則AD⊥BC;
②若E、F、G分別是BC、AB、CD的中點,則∠FEG的大小等于異面直線AC與BD所成角的大。
③若四面體ABCD有內(nèi)切球,則
④若四個面是全等的三角形,則ABCD為正四面體。
其中正確的是:  (填上所有正確命題的序號)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2DC,F是BE的中點,求證:(1)  FD∥平面ABC;     (2)FD⊥平面ABE;      (3)  AF⊥平面EDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,直三棱柱A1B1C1-ABC中,C1C=CB=CA=2,ACCBD、E分別為棱C1CB1C1的中點.
(Ⅰ)求A1B與平面A1C1CA所成角的大;
(Ⅱ)求二面角B-A1D-A的大小;
(Ⅲ)試在線段AC上確定一點F,使得EF⊥平面A1BD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知、是兩個不同平面,是兩不同直線,下列命題中的假命題是 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)

如圖,在長方體中,,AB=2,點E在棱AB上移動.
(Ⅰ)證明:;
(Ⅱ)當(dāng)E為AB的中點時,求點A到面的距離;
(Ⅲ)AE等于何值時,二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個長方體共一個頂點的三個面的面積分別是,,這個長方體對角線的長是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)正方體的棱長為2 ,一個球內(nèi)切于該正方體。則這個球的體積是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

9.由“若直角三角形兩直角邊的長分別為,將其補成一個矩形,則根據(jù)矩形的對角線長可求得該直角三角形外接圓的半徑為”. 對于“若三棱錐三條側(cè)棱兩兩垂直,側(cè)棱長分別為”,類比上述處理方法,可得該三棱錐的外接球半徑為=    ▲   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖正六邊形ABCDEF中,P是△CDE內(nèi)(包括邊界)的動點,設(shè)α、β∈R),則α+β的取值范圍是   

查看答案和解析>>

同步練習(xí)冊答案