已知函數(shù).
(1)求函數(shù)的最小正周期;
(2)當(dāng)時,求函數(shù)的最大值和最小值.
(1)函數(shù)的最小正周期為;(2)時,函數(shù)取到最小值,時,函數(shù)取到最大值.
解析試題分析:(1)求函數(shù)的最小正周期,求三角函數(shù)周期,首先將函數(shù)化成一個角的一個三角函數(shù),即化成形式,因此對函數(shù)先化簡,由,整理得,,由此可用二倍角公式整理得,再由兩角和的正弦得,進而可有求得周期;(2)當(dāng)時,求函數(shù)的最大值和最小值,由得,,進而轉(zhuǎn)化為正弦函數(shù)的最值,從而求出函數(shù)的最大值和最小值.
(1) 4分
, 6分
所以函數(shù)的最小正周期為. 7分
(2)由 ,得.
所以 , 9分
所以 ,即 . 11分
當(dāng),即時,函數(shù)取到最小值; 12分
當(dāng),即時,函數(shù)取到最大值. 13分
考點:三角函數(shù)化簡,求周期,最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC中,cos(-A)+cos(π+A)=-.
(1)判斷△ABC是銳角三角形還是鈍角三角形;
(2)求tanA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù).
(1)求函數(shù)的周期和對稱軸方程;
(2)求函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
將函數(shù)的圖形向右平移個單位后得到的圖像,已知的部分圖像如圖所示,該圖像與y軸相交于點,與x軸相交于點P、Q,點M為最高點,且的面積為.
(1)求函數(shù)的解析式;
(2)在中,分別是角A,B,C的對邊,,且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=4x3-3x2cosθ+,其中x∈R,θ為參數(shù),且0≤θ≤2π.
(1)當(dāng)時,判斷函數(shù)f(x)是否有極值;
(2)要使函數(shù)f(x)的極小值大于零,求參數(shù)θ的取值范圍;
(3)若對(2)中所求的取值范圍內(nèi)的任意參數(shù)θ,函數(shù)f(x)在區(qū)間(2A-1,A)內(nèi)都是增函數(shù),求實數(shù)A的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1) 化簡 并求的振幅、相位、初相;
(2) 當(dāng)時,求f(x)的最小值以及取得最小值時x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)用“五點法”畫出函數(shù)在一個周期內(nèi)的圖像
(2)求函數(shù)的最小正周期和單調(diào)增區(qū)間;
(3)在區(qū)間上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com