【題目】已知橢圓的頂點到左焦點的距離為,離心率.
(1)求橢圓的方程;
(2)若點為橢圓的右頂點,過點作互相垂直的兩條射線,與橢圓分別交于不同的兩點不與左、右頂點重合) ,試判斷直線是否過定點,若過定點,求出該定點的坐標;若不過定點,請說明理由.
【答案】(1);(2)直線過定點.
【解析】
試題分析:(1)根據(jù)題意列出的方程組結(jié)合,求出的值;(2)當直線的斜率不存在時,求出兩點坐標,可得其與的交點,當當直線的斜率存在時,設(shè)直線的方程為,整理方程組可得兩點坐標的關(guān)系,根據(jù)及橢圓的右頂點,由向量的數(shù)量積坐標表示出的關(guān)系,代入直線方程即可求得直線經(jīng)過的定點.
試題解析:(1)由題意可知:, 解得:,故橢圓的標準方程為.
(2)設(shè)當直線的斜率不存在時,軸,為等腰直角三角形,
,又,又不與左、右頂點重合,解得,此時,直線過點.
當直線的斜率存在時,設(shè)直線的方程為,由方程組,得,整理得,則.由已知,且橢圓的右頂點為,所以,,即,整理得,解得或均滿足成立.當時,直線的方程過頂點,與題意矛盾舍去.當時,直線的方程過定點,故直線過定點,且定點是.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-1:幾何證明選講
如圖所示,已知圓外有一點,作圓的切線,為切點,過的中點,作割線,交圓于、兩點,連接并延長,交圓于點,連接交圓于點,若.
(Ⅰ)求證:;
(Ⅱ)求證:四邊形是平行四邊形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機抽取個農(nóng)戶,考察每個農(nóng)戶的年收入與年積蓄的情況進行分析,設(shè)第個農(nóng)戶的年收入(萬元),年積蓄(萬元),經(jīng)過數(shù)據(jù)處理得
(Ⅰ)已知家庭的年結(jié)余對年收入具有線性相關(guān)關(guān)系,求線性回歸方程;
(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在萬以上,即稱該農(nóng)戶已達小康生活,請預測農(nóng)戶達到小康生活的最低年收入應(yīng)為多少萬元?
附:在 中, 其中為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高二某班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的損壞,可見部分如下:
試著根據(jù)表中的信息解答下列問題:
(Ⅰ)求全班的學生人數(shù)及分數(shù)在[70,80)之間的頻數(shù);
(Ⅱ)為快速了解學生的答題情況,老師按分層抽樣的方法從位于[70,80)和[80,90)分數(shù)段的試卷中抽取7份進行分析,再從中任選2人進行交流,求交流的學生中,成績位于[70,80)分數(shù)的人恰有一人被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海州市英才中學某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了至月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料(表):
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
晝夜溫差 | ||||||
就診人數(shù)(個) |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.
(1)求選取的組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是月與6月的兩組數(shù)據(jù),請根據(jù)至月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想.
其中回歸系數(shù)公式,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校的一個社會實踐調(diào)查小組,在對該校學生的良好“用眼習慣”的調(diào)查中,隨機發(fā)放了120分問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下列聯(lián)表:
做不到科學用眼 | 能做到科學用眼 | 合計 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合計 | 75 | 25 | 100 |
(1)現(xiàn)按女生是否能做到科學用眼進行分層,從45份女生問卷中抽取了6份問卷,從這6份問卷中再隨機抽取3份,并記其中能做到科學用眼的問卷的份數(shù),試求隨機變量的分布列和數(shù)學期望;
(2)若在犯錯誤的概率不超過的前提下認為良好“用眼習慣”與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應(yīng)為多少?請說明理由.
附:獨立性檢驗統(tǒng)計量,其中.
獨立性檢驗臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.840 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線C的極坐標方程是,以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線L的參數(shù)方程是(t為參數(shù)).
(1)求曲線C的直角坐標方程和直線L的普通方程;
(2)設(shè)點P(m,0),若直線L與曲線C交于兩點A,B,且,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(1)當時,求函數(shù)的零點;
(2)求的單調(diào)區(qū)間;
(3)當時,若對恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某煙花廠家為了測試最新研制出的一種“沖天”產(chǎn)品升空的安全性,特對其進行了一項測試。如圖,這種煙花在燃放點C進行燃放實驗,測試人員甲、乙分別在A,B兩地(假設(shè)三地在同一水平面上),測試人員甲測得A、B兩地相距80米且∠BAC=60°,甲聽到煙花燃放“沖天”時的聲音的時間比乙晚秒.在A地測得該煙花升至最高點H處的仰角為60°.(已知聲音的傳播速度為340米∕秒)
(1)求甲距燃放點C的距離;(2)求這種煙花的垂直“沖天”高度HC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com