【題目】已知離心率為的橢圓的上下頂點分別為,,直線與橢圓相交于,兩點,與相交于點 .

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若,求面積的最大值;

(Ⅲ)設(shè)直線,相交于點,求的值.

【答案】(Ⅰ)(Ⅱ)(Ⅲ)1

【解析】

(Ⅰ)根據(jù)題意解得得到橢圓方程.

(Ⅱ)設(shè),,聯(lián)立方程得到根與系數(shù)關(guān)系,根據(jù)垂直得到,計算三角形面積表達(dá)式,換元利用二次函數(shù)性質(zhì)得到答案.

(Ⅲ)計算的直線方程,相除整理得到,計算,代入向量數(shù)量積公式得到答案.

(Ⅰ)由題意可得:,,聯(lián)立解得.

所以橢圓的方程為:.

(Ⅱ)設(shè),,聯(lián)立方程組,

化簡得;

,

,;

因為,

化簡整理得到,故

,

設(shè),所以,所以當(dāng)時,.

(Ⅲ)設(shè),,直線①,

直線②;①÷②得,

設(shè),則

,所以.

所以

所以,又因為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求函數(shù)的極值;

2)若函數(shù)在區(qū)間內(nèi)存在零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、分別是橢圓的左、右焦點,、兩點分別是橢圓的上、下頂點,是等腰直角三角形,延長交橢圓點,且的周長為.

1)求橢圓的方程;

2)設(shè)點是橢圓上異于的動點,直線、與直線分別相交于、兩點,點,試問:外接圓是否恒過軸上的定點(異于點)?若是,求該定點坐標(biāo);若否,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在脫貧攻堅中,某市教育局定點幫扶前進(jìn)村戶貧困戶.駐村工作隊對這戶村民的貧困程度以及家庭平均受教育程度進(jìn)行了調(diào)査,并將該村貧困戶按貧困程度分為“絕對貧困戶”與“相對貧困戶”,同時按家庭平均受教育程度分為“家庭平均受教育年限年”與“家庭平均受教育年限年”,具體調(diào)査結(jié)果如下表所示:

平均受教育年限

平均受教育年限

總計

絕對貧困戶

10

40

50

相對貧困戶

20

30

50

總計

30

70

100

1)為了參加扶貧辦公室舉辦的貧困戶“談心談話”活動,現(xiàn)通過分層抽樣從“家庭平均受教育年限年”的戶貧困戶中任意抽取戶,再從所抽取的戶中隨機(jī)抽取戶參加“談心談話”活動,求至少有戶是絕對貧困戶的概率;

2)根據(jù)上述表格判斷:是否有的把握認(rèn)為貧困程度與家庭平均受教育程度有關(guān)?

參考公式:

參考數(shù)據(jù):

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,平面⊥平面,是以為斜邊的等腰直角三角形,,,,的中點.

1)證明:

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的內(nèi)角、、的對邊分別為、,且

(Ⅰ)求;

(Ⅱ)若,如圖,為線段上一點,且,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是我國大陸地區(qū)從2013年至2019年國內(nèi)生產(chǎn)總值(GDP)近似值(單位:萬億元人民幣)的數(shù)據(jù)表格:

年份

2013

2014

2015

2016

2017

2018

2019

年份代號

1

2

3

4

5

6

7

中國大陸地區(qū)GDP

(單位:萬億元人民幣)

關(guān)于的線性回歸方程(系數(shù)精確到);

(Ⅱ)黨的十九大報告中指出:從2020年到2035年,在全面建成小康社會的基礎(chǔ)上,再奮斗15年,基本實視社會主義現(xiàn)代化.若到2035年底我國人口增長為億人,假設(shè)到2035年世界主要中等發(fā)達(dá)國家的人均國民生產(chǎn)總值的頻率直方圖如圖所示.

以(Ⅰ)的結(jié)論為依據(jù),預(yù)測我國在2035年底人均國民生產(chǎn)總值是否可以超過假設(shè)的2035年世界主要中等發(fā)達(dá)國家的人均國民生產(chǎn)總值平均數(shù)的估計值.

參考數(shù)據(jù):

參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓的左頂點斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.

1)求橢圓的離心率;

2)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中m為常數(shù),且是函數(shù)的極值點.

(Ⅰ)求m的值;

(Ⅰ)若上恒成立,求實數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊答案