【題目】已知,是橢圓上的三點(diǎn),其中的坐標(biāo)為過橢圓的中心,且橢圓長軸的一個端點(diǎn)與短軸的兩個端點(diǎn)構(gòu)成正三角形.

1)求橢圓的方程;

2)當(dāng)直線的斜率為1時,求面積;

3)設(shè)直線與橢圓交于兩點(diǎn),且線段的中垂線過橢圓軸負(fù)半軸的交點(diǎn),求實(shí)數(shù)的值.

【答案】1;(26;(3.

【解析】

1)由題意可得,再由正三角形的條件可得,解得,進(jìn)而得到橢圓方程;

2)由題意寫出點(diǎn)坐標(biāo),直線方程,聯(lián)立直線方程與橢圓方程可求得交點(diǎn)、的縱坐標(biāo),,代入數(shù)值即可求得面積;(3)聯(lián)立直線與橢圓方程消掉的二次方程,設(shè),,線段的中點(diǎn),由韋達(dá)定理及中點(diǎn)坐標(biāo)公式可用表示出中點(diǎn)坐標(biāo),由垂直可得,解出即得值,注意檢驗(yàn)△

1的坐標(biāo)為,,即有

橢圓長軸的一個端點(diǎn)與短軸的兩個端點(diǎn)構(gòu)成正三角形,

可得,解得,

則橢圓的方程為

(2)直線的方程為,

代入橢圓方程,得,

(3)由,△,

依題意,,設(shè),,,線段的中點(diǎn),

,,,

,得,解得

所以實(shí)數(shù)的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面為矩形,平面平面,,點(diǎn),分別是的中點(diǎn).

1)求證:平面;

2)若與平面所成角的余弦值等于,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從本班24名女同學(xué),18名男同學(xué)中隨機(jī)抽取一個容量為7的樣本進(jìn)行分析.

(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結(jié)果)

(2)如果隨機(jī)抽取的7名同學(xué)的數(shù)學(xué),物理成績(單位:分)對應(yīng)如下表:

學(xué)生序號

1

2

3

4

5

6

7

數(shù)學(xué)成績

60

65

70

75

85

87

90

物理成績

70

77

80

85

90

86

93

①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學(xué)中抽取3名同學(xué),記3名同學(xué)中數(shù)學(xué)和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學(xué)期望;

②根據(jù)上表數(shù)據(jù),求物理成績關(guān)于數(shù)學(xué)成績的線性回歸方程(系數(shù)精確到0.01);若班上某位同學(xué)的數(shù)學(xué)成績?yōu)?6分,預(yù)測該同學(xué)的物理成績?yōu)槎嗌俜郑?/span>

附:線性回歸方程,

其中,.

76

83

812

526

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義符號函數(shù),已知.

1)求關(guān)于的表達(dá)式,并求的最小值.

2)當(dāng)時,函數(shù)上有唯一零點(diǎn),求的取值范圍.

3)已知存在,使得對任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,,.

1)求證:;

2)若二面角的大小為時,求的中線與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為實(shí)數(shù).

1)討論上的奇偶性;(只要寫出結(jié)論,不需要證明)

2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

3)當(dāng)時,求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)當(dāng)時,求的單調(diào)區(qū)間;

2)若時,恒成立,求實(shí)數(shù)的取值范圍.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程為

1)設(shè)橢圓的左右焦點(diǎn)分別為、,點(diǎn)在橢圓上運(yùn)動,求的值;

2)設(shè)直線和圓相切,和橢圓交于、兩點(diǎn),為原點(diǎn),線段分別和圓交于、兩點(diǎn),設(shè)、的面積分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面是等邊三角形,且平面平面E的中點(diǎn),,.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案