【題目】設(shè)是一個給定的非零實數(shù),在平面直角坐標系中,曲線的方程為且,點.
(1)設(shè)是上的任意一點,試求線段的中點的軌跡的方程并指出曲線的類型和位置;
(2)求出、在它們的交點處的各自切線之間的夾角(銳角)(用反三角函數(shù)式表示)
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線上任意一點到直線的距離是它到點距離的2倍;曲線是以原點為頂點,為焦點的拋物線.
(1)求的方程;
(2)設(shè)過點的直線與曲線相交于兩點,分別以為切點引曲線的兩條切線,設(shè)相交于點,連接的直線交曲線于兩點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖為我國數(shù)學家趙爽(約3世紀初)在為《周髀算經(jīng)》作注時驗證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個小區(qū)域涂色,規(guī)定每個區(qū)域只涂一種顏色、相鄰區(qū)域顏色不同,則區(qū)域不同涂色的方法種數(shù)為( )
A.360B.400C.420D.480
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的離心率為,過橢圓的焦點且與長軸垂直的弦長為1.
(1)求橢圓C的方程;
(2)設(shè)點M為橢圓上第一象限內(nèi)一動點,A,B分別為橢圓的左頂點和下頂點,直線MB與x軸交于點C,直線MA與y軸交于點D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.
(1)求拋物線方程;
(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】試問:能否把2008表示成的形式?如果可以,這種表示方式是否有無限多個?其中,m、n均為大于100且小于170的正整數(shù),且;均為兩兩不相等的小于6的正有理數(shù),且均為大于1且小于5的正整數(shù),同時, 兩兩不相等,也兩兩不相等請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x,g(x)=2x+a,若x1∈[,1],x2∈[2,3],使得f(x1)≥g(x2),則實數(shù)a的取值范圍是( )
A.a≤1B.a≥1C.a≤2D.a≥2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】推進垃圾分類處理,是落實綠色發(fā)展理念的必然選擇,也是打贏污染防治攻堅戰(zhàn)的重要環(huán)節(jié).為了解居民對垃圾分類的了解程度,某社區(qū)居委會隨機抽取1000名社區(qū)居民參與問卷測試,并將問卷得分繪制頻率分布表如表:
得分 | |||||||
男性 人數(shù) | 40 | 90 | 120 | 130 | 110 | 60 | 30 |
女性 人數(shù) | 20 | 50 | 80 | 110 | 100 | 40 | 20 |
(1)從該社區(qū)隨機抽取一名居民參與問卷測試,試估計其得分不低于60分的概率;
(2)將居民對垃圾分類的了解程度分為“比較了解”(得分不低于60分)和“不太了解”(得分低于60分)兩類,完成2×2列聯(lián)表,并判斷是否有95%的把握認為“居民對垃圾分類的了解程度”與“性別”有關(guān)?
不太了解 | 比較了解 | 合計 | |
男性 | |||
女性 | |||
合計 |
(3)從參與問卷測試且得分不低于80分的居民中,按照性別進行分層抽樣,共抽取10人,現(xiàn)從這10人中隨機抽取3人作為環(huán)保宣傳隊長,設(shè)3人中男性隊長的人數(shù)為ξ,求ξ的分布列和期望.
附:,(n=a+b+c+d).
臨界值表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)是一個各位數(shù)字都不是0且沒有重復數(shù)字的三位數(shù),將組成的3個數(shù)字按從小到大排成的三位數(shù)記為,按從大到小排成的三位數(shù)記為,(例如,則,)閱讀如圖所示的程序框圖,運行相應(yīng)的程序,任意輸入一個,輸出的結(jié)果=( )
A. 693 B. 594 C. 495 D. 792
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com