【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)過橢圓上異于其頂點(diǎn)的任一點(diǎn),作圓的切線,切點(diǎn)分別為(不在坐標(biāo)軸上),若直線的橫縱截距分別為,求證:為定值
【答案】(1) (2)見解析
【解析】
(1)由點(diǎn)在橢圓上列方程,結(jié)合即可求得,問題得解。
(2)設(shè)根據(jù)圓的切線可得,由此表示直線方程,將代入直線方程可得,同理可得,由此可得到兩點(diǎn)在直線上,即可求得直線的方程,由此表示出,結(jié)合即可證得結(jié)論,問題得解。
解:(1)將點(diǎn)代入橢圓的方程可得:,
又,解得:,
所以橢圓的標(biāo)準(zhǔn)方程為
(2)由(1)可得:
設(shè)
∴可知是過作圓切線所產(chǎn)生的切點(diǎn)弦
設(shè),由是切點(diǎn)可得:
∴
∴直線方程,代入:,
即 ,同理可知對于,有
因?yàn)?/span>在圓上
∴ ∴
∴為直線上的點(diǎn)
因?yàn)閮牲c(diǎn)確定唯一一條直線
∴直線方程,即
由截距式可知
∴
∵在橢圓上
∴
∴
即為定值
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中政教處為了調(diào)查學(xué)生對“一帶一路”的關(guān)注情況,在全校組織了“一帶一路知多少”的知識問卷測試,并從中隨機(jī)抽取了12份問卷,得到其測試成績(百分制)的莖葉圖如下:.
(1)寫出該樣本的中位數(shù),若該校共有3000名學(xué)生,試估計該校測試成績在70分以上的人數(shù);
(2)從所抽取的70分以上的學(xué)生中再隨機(jī)選取4人,記表示測試成績在80分以上的人數(shù),求的分布列和數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 是函數(shù)的導(dǎo)函數(shù),則的圖象大致是( )
A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]
C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)的圖象, 只需將函數(shù)的圖象( )
A. 所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個單位.
B. 所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個單位.
C. 所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個單位.
D. 所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個單位.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時,若在區(qū)間上的最小值為-2,其中是自然對數(shù)的底數(shù),求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一種藥在病人血液中的含量不低于2克時,它才能起到有效治療的作用,已知每服用且克的藥劑,藥劑在血液中的含量克隨著時間小時變化的函數(shù)關(guān)系式近似為,其中.
若病人一次服用9克的藥劑,則有效治療時間可達(dá)多少小時?
若病人第一次服用6克的藥劑,6個小時后再服用3m克的藥劑,要使接下來的2小時中能夠持續(xù)有效治療,試求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條直線l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0. 求滿足下列條件的a,b值.
(Ⅰ)l1⊥l2且l1過點(diǎn)(﹣3,﹣1);
(Ⅱ)l1∥l2且原點(diǎn)到這兩直線的距離相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個命題:
①函數(shù)的一條對稱軸是;
②函數(shù)的圖象關(guān)于點(diǎn)(,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù)
④若,則,其中
以上四個命題中正確的有 (填寫正確命題前面的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com