【題目】在直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)).以坐標原點為極點,以x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.

1)求l的普通方程和C的直角坐標方程;

2)若lC相交于AB兩點,且,求a的值.

【答案】1l的普通方程為C的直角坐標方程為.2

【解析】

1)根據(jù)消去t,得到l的普通方程,由,把,代入上式求解.

2)由聯(lián)立得到,設(shè)A,B兩點對應(yīng)的參數(shù)分別為,,再由求解.

1)由消去t,得l的普通方程為,

.

,

,

,

代入上式,

,

所以C的直角坐標方程為.

2)解法1:把代入

,(*)

設(shè)A,B兩點對應(yīng)的參數(shù)分別為,,

,

,

,得,

解得.

此時,(*)式的判別式.

所以a的值為.

解法2:由消去y,

.(*)

設(shè),

,

.

,得,解得.

此時,(*)式的判別式.

所以a的值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科.山東省采用3+3模式,其中語文、數(shù)學(xué)、外語三科為必考科目,每門科目滿分均為150分.另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(63),每門科目滿分均為100分.為了應(yīng)對新高考,某高中從高一年級1100名學(xué)生(其中男生600人,女生500人)中,采用分層抽樣的方法從中抽取n名學(xué)生進行調(diào)查,其中女生抽取50人.

1)求n的值;

2)學(xué)校計劃在高一上學(xué)期開設(shè)選修中的物理地理兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對抽取到的n名學(xué)生進行問卷調(diào)查(假定每名學(xué)生在物理地理這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結(jié)果得到的一個不完整的2×2列聯(lián)表,請將下面的2×2列聯(lián)表補充完整,并判斷是否有99%的把握認為選擇科目與性別有關(guān)?說明你的理由;

選擇物理

選擇地理

總計

男生

10

女生

30

合計

3)按(2)中選物理的男生女生的比例進行分層抽樣,從選物理的學(xué)生中抽出8名學(xué)生,再從這8名學(xué)生中抽取3人組成物理興趣小組,設(shè)這3人中女生的人數(shù)為X,求X的概率分布列及數(shù)學(xué)期望.

005

001

0005

0001

3841

6635

7879

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年為我國改革開放40周年,某事業(yè)單位共有職工600人,其年齡與人數(shù)分布表如下:

年齡段

人數(shù)(單位:人)

180

180

160

80

約定:此單位45歲~59歲為中年人,其余為青年人,現(xiàn)按照分層抽樣抽取30人作為全市慶祝晚會的觀眾.

(1)抽出的青年觀眾與中年觀眾分別為多少人?

(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關(guān)心民生大事,其余人熱衷關(guān)心民生大事.完成下列列聯(lián)表,并回答能否有的把握認為年齡層與熱衷關(guān)心民生大事有關(guān)?

熱衷關(guān)心民生大事

不熱衷關(guān)心民生大事

總計

青年

12

中年

5

總計

30

(3)若從熱衷關(guān)心民生大事的青年觀眾(其中1人擅長歌舞,3人擅長樂器)中,隨機抽取2人上表演節(jié)目,則抽出的2人能勝任才藝表演的概率是多少?

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]:在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線,的直角坐標方程;

(2)判斷曲線,是否相交,若相交,請求出交點間的距離;若不相交,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué),給所有同學(xué)幾何和代數(shù)各一題,讓各位同學(xué)自由選擇一道題進行解答,統(tǒng)計情況如下表:(單位:人)

幾何題

代數(shù)題

總計

男 同學(xué)

22

8

30

女同學(xué)

8

12

20

總計

30

20

50

(1)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關(guān)?

(2)現(xiàn)從選擇幾何題的8名女生中任意抽取兩人對他們的答題進行研究,記甲、乙兩名女生被抽到的人數(shù)為,的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,,,的中點.

(1)證明:;

(2),點在平面的射影在上,且與平面所成角的正弦值為,求三棱柱的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線與函數(shù)的圖像恰有兩個不同的公共點.求出所有這樣的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形所在平面與半圓弧所在平面垂直,上異于的點

(1)證明:平面平面;

(2)在線段上是否存在點,使得平面?說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在研究吸煙與患肺癌的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得吸煙與患肺癌有關(guān)的結(jié)論,并且在犯錯誤的概率不超過0.01的前提下認為這個結(jié)論是成立的,下列說法中正確的是(

A.100個吸煙者中至少有99人患有肺癌

B.1個人吸煙,那么這個人有99%的概率患有肺癌

C.100個吸煙者中一定有患肺癌的人

D.100個吸煙者中可能一個患肺癌的人也沒有

查看答案和解析>>

同步練習(xí)冊答案