已知數(shù)列{an}滿足a1=0,an+1=an+2n,那么a2003的值是


  1. A.
    20032
  2. B.
    2002×2001
  3. C.
    2003×2002
  4. D.
    2003×2004
C
分析:根據(jù)an+1=an+2n可知利用疊加法,a2003=a1+(a2-a1)+(a3-a2)+…+(a2003-a2002),然后利用等差數(shù)列求和公式進(jìn)行求解即可.
解答:∵a1=0,an+1=an+2n,
∴a2-a1=2,a3-a2=4,…,a2003-a2002=4004,
∴a2003=a1+(a2-a1)+(a3-a2)+…+(a2003-a2002
=0+2+4+…+4004
=
=2003×2002.
故選C.
點(diǎn)評:本題主要考查數(shù)列的性質(zhì)和應(yīng)用,以及數(shù)列的遞推關(guān)系和疊加法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊答案