【題目】如圖,在邊長為a的菱形ABCD中,,E,F是PA和AB的中點。
(1)求證: EF||平面PBC ;
(2)求E到平面PBC的距離.
【答案】(1)詳見解析(2)
【解析】
試題分析:(1)欲證EF∥平面PBC,根據(jù)直線與平面平行的判定定理可知只需證EF與平面PBC內(nèi)一直線平行,而EF∥PB,又EF平面PBC,PB平面PBC,滿足定理所需條件;(2)在面ABCD內(nèi)作過F作FH⊥BC于H,又EF∥平面PBC,故點E到平面PBC的距離等于點F到平面PBC的距離FH.在直角三角形FBH中,求出FH即可,最后根據(jù)點E到平面PBC的距離等于點F到平面PBC的距離即可求出所求
試題解析:(1)證明:
又
故
(2)解:在面ABCD內(nèi)作過F作
又 ,,
又,故點E到平面PBC的距離等于點F到平面PBC的距離FH。
在直角三角形FBH中,,
故點E到平面PBC的距離等于點F到平面PBC的距離等于。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè):實數(shù)滿足,其中;
:實數(shù)滿足.
(Ⅰ)若,且為真,求實數(shù)的取值范圍;
(Ⅱ)若是的必要不充分條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對一切實數(shù)都有 成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設(shè):當(dāng)時,不等式 恒成立;Q:當(dāng)時,是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=bx﹣axlnx(a>0)的圖象在點(1,f(1))處的切線與直線平y(tǒng)=(1﹣a)x行.
(1)若函數(shù)y=f(x)在[e,2e]上是減函數(shù),求實數(shù)a的最小值;
(2)設(shè)g(x)= ,若存在x1∈[e,e2],使g(x1)≤ 成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個班級共有105名學(xué)生,某次數(shù)學(xué)考試按照“大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀”的原則統(tǒng)計成績后,得到如下列聯(lián)表。
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
總計 | 105 |
已知從甲、乙兩個班級中隨機(jī)抽取1名學(xué)生,其成績?yōu)閮?yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;
(2)能否有把握認(rèn)為成績與班級有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知某曲線C的極坐標(biāo)方程為,直線的極坐標(biāo)方程為
(1)求該曲線C的直角坐標(biāo)系方程及離心率
(2)已知點為曲線C上的動點,求點到直線的距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)為迎接校運(yùn)動會的到來,在三年級招募了16名男志愿者和14名女志愿者.調(diào)查發(fā)現(xiàn),男、女志愿者中分別各有10人和6人喜歡運(yùn)動,其余人員不喜歡運(yùn)動.
(1)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表,并說明是否有95%的把握認(rèn)為性別與喜歡運(yùn)動有關(guān);
喜歡運(yùn)動 | 不喜歡運(yùn)動 | 總計 | |
男 | |||
女 | |||
總計 |
(2)如果喜歡運(yùn)動的女志愿者中恰有4人懂得醫(yī)療救護(hù),現(xiàn)從喜歡運(yùn)動的女志愿者中抽取2名負(fù)責(zé)處理應(yīng)急事件,求抽出的2名志愿者都懂得醫(yī)療救護(hù)的概率.
附:K2=,
P(K2≥k0) | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的最小正周期;
(2)設(shè),若在上的值域為,求實數(shù)的值;
(3)若對任意的和恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com