【題目】已知為等差數(shù)列的前項和,且, .

(1)求數(shù)列的通項公式;

(2)若,求證:

(3)求數(shù)列的前項和.

【答案】(1);(2)見解析;(3).

【解析】試題分析:(1利用等差數(shù)列的首項、公差、項和項數(shù)的關系列出方程求出首先和公差,得到通項公式;(2)由(1)得,

,加即可證明;(3),利用錯位相減法求.

試題解析:(1) ., , .

(2)證明:由(1)知 ,

,

.

(3)解: , ,

,

,

.

【易錯點晴】本題主要考查等差數(shù)列、裂項相消法、錯位相減法求數(shù)列的和,,屬于難題. “錯位相減法”求數(shù)列的和是重點也是難點,利用“錯位相減法”求數(shù)列的和應注意以下幾點:①掌握運用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時注意最后一項 的符號;③求和時注意項數(shù)別出錯;④最后結果一定不能忘記等式兩邊同時除以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在實數(shù)中定義一種新運算: ,對實數(shù)經過運算后是一個確定的唯一的實數(shù)。運算有如下性質:(1)對任意實數(shù), ;(2)對任意實數(shù), 那么:關于函數(shù)的性質下列說法正確的是:①函數(shù)的最小值為3;②函數(shù)是偶函數(shù);③函數(shù)上為減函數(shù),這三種說法正確的有__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產量(單位:百千克)與肥料費用(單位:百元)滿足如下關系:,且投入的肥料費用不超過5百元.此外,還需要投入其他成本(如施肥的人工費等)百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應求.記該棵水蜜桃樹獲得的利潤為(單位:百元).

(1)求利潤函數(shù)的函數(shù)關系式,并寫出定義域;

(2)當投入的肥料費用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為

)求滿足的概率;

)設三條線段的長分別為5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)相鄰兩對稱軸間的距離為,若將的圖像先向左平移個單位,再向下平移1個單位,所得的函數(shù)為奇函數(shù).

(1)求的解析式,并求的對稱中心;

(2)若關于的方程在區(qū)間上有兩個不相等的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線的極坐標方程為, 的交點為.

(1)判斷點與曲線的位置關系;

(2)點為曲線上的任意一點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和

1)計算,,

2)猜想的表達式,并用數(shù)學歸納法證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了對某課題進行研究,用分層抽樣方法從三所高校的相關人員中,抽取若干人組成研究小組,有關數(shù)據見下表(單位:人)

高校

相關人數(shù)

抽取人數(shù)

A

18


B

36

2

C

54


)求,;

)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 的焦點為,過點的直線相交于、兩點,點關于軸的對稱點為

(Ⅰ)判斷點是否在直線上,并給出證明;

(Ⅱ)設,求的內切圓的方程.

查看答案和解析>>

同步練習冊答案