【題目】已知為等差數(shù)列的前項和,且, .
(1)求數(shù)列的通項公式;
(2)若,求證: ;
(3)求數(shù)列的前項和.
【答案】(1);(2)見解析;(3).
【解析】試題分析:(1)利用等差數(shù)列的首項、公差、項和項數(shù)的關系列出方程求出首先和公差,得到通項公式;(2)由(1)得為,
,加即可證明;(3),利用錯位相減法求.
試題解析:(1), ., , , .
(2)證明:由(1)知, ,
,
,
即.
(3)解: , ,
, ,
即,
故.
【易錯點晴】本題主要考查等差數(shù)列、裂項相消法、錯位相減法求數(shù)列的和,,屬于難題. “錯位相減法”求數(shù)列的和是重點也是難點,利用“錯位相減法”求數(shù)列的和應注意以下幾點:①掌握運用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時注意最后一項 的符號;③求和時注意項數(shù)別出錯;④最后結果一定不能忘記等式兩邊同時除以.
科目:高中數(shù)學 來源: 題型:
【題目】在實數(shù)中定義一種新運算: ,對實數(shù)經過運算后是一個確定的唯一的實數(shù)。運算有如下性質:(1)對任意實數(shù), ;(2)對任意實數(shù), 那么:關于函數(shù)的性質下列說法正確的是:①函數(shù)的最小值為3;②函數(shù)是偶函數(shù);③函數(shù)在上為減函數(shù),這三種說法正確的有__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產量(單位:百千克)與肥料費用(單位:百元)滿足如下關系:,且投入的肥料費用不超過5百元.此外,還需要投入其他成本(如施肥的人工費等)百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應求.記該棵水蜜桃樹獲得的利潤為(單位:百元).
(1)求利潤函數(shù)的函數(shù)關系式,并寫出定義域;
(2)當投入的肥料費用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為.
(Ⅰ)求滿足的概率;
(Ⅱ)設三條線段的長分別為和5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)相鄰兩對稱軸間的距離為,若將的圖像先向左平移個單位,再向下平移1個單位,所得的函數(shù)為奇函數(shù).
(1)求的解析式,并求的對稱中心;
(2)若關于的方程在區(qū)間上有兩個不相等的實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線的極坐標方程為, 與的交點為.
(1)判斷點與曲線的位置關系;
(2)點為曲線上的任意一點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了對某課題進行研究,用分層抽樣方法從三所高校的相關人員中,抽取若干人組成研究小組,有關數(shù)據見下表(單位:人)
高校 | 相關人數(shù) | 抽取人數(shù) |
A | 18 | |
B | 36 | 2 |
C | 54 |
(Ⅰ)求,;
(Ⅱ)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: 的焦點為,過點的直線與相交于、兩點,點關于軸的對稱點為.
(Ⅰ)判斷點是否在直線上,并給出證明;
(Ⅱ)設,求的內切圓的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com