(本題滿分9分)已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過點(diǎn)
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作直線交拋物線于兩點(diǎn),使得恰好平分線段,求直線的方程

(1);(2)。

解析試題分析:(1)設(shè)拋物線方程為x2=2py(p>0),由已知得:4=2p×1,則2p=4,由此能求出拋物線方程.
(2)由 與直線AB聯(lián)立方程組,再由根的判別式和韋達(dá)定理進(jìn)行求解.
(1)解: ;(2)考點(diǎn):本題主要是考查拋物線的方程以及幾何性質(zhì)的運(yùn)用,直線和圓錐曲線的位置關(guān)系的綜合運(yùn)用,
點(diǎn)評:解決該試題的關(guān)鍵是解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)
已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知橢圓C:的上頂點(diǎn)坐標(biāo)為,離心率為.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),A為左頂點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)雙曲線C與橢圓有相同的焦點(diǎn),直線y=的一條漸近線.
(Ⅰ)求雙曲線的方程;
(Ⅱ)過點(diǎn)(0,4)的直線,交雙曲線于A,B兩點(diǎn),交x軸于點(diǎn)(點(diǎn)與的頂點(diǎn)不重合)。當(dāng) =,且時(shí),求點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知拋物線的焦點(diǎn)為,準(zhǔn)線為,過上一點(diǎn)P作拋物線的兩切線,切點(diǎn)分別為A、B,
(1)求證:
(2)求證:A、F、B三點(diǎn)共線;
(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在軸上,橢圓短軸的端點(diǎn)和焦點(diǎn)組成的四邊形為正方形,且.
(1)求橢圓方程;
(2)直線過點(diǎn),且與橢圓相交于、不同的兩點(diǎn),當(dāng)面積取得最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)已知中心在原點(diǎn)O,焦點(diǎn)在軸上的橢圓C的離心率為,點(diǎn)A,B分別是橢圓C的長軸、短軸的端點(diǎn),點(diǎn)O到直線AB的距離為。

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)E(3,0),設(shè)點(diǎn)P、Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),滿足EP⊥EQ,
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)雙曲線與直線交于兩個(gè)不同的點(diǎn),求雙曲線的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為雙曲線的左、右焦點(diǎn).
(Ⅰ)若點(diǎn)為雙曲線與圓的一個(gè)交點(diǎn),且滿足,求此雙曲線的離心率;
(Ⅱ)設(shè)雙曲線的漸近線方程為,到漸近線的距離是,過的直線交雙曲線于A,B兩點(diǎn),且以AB為直徑的圓與軸相切,求線段AB的長.

查看答案和解析>>

同步練習(xí)冊答案