已知函數(shù)y=f(x)的圖象關(guān)于直線x=-1對稱,且當(dāng)x∈(0,+∞)時,有f(x)=,則當(dāng)x∈(-∞,-2)時,f(x)的解析式為( )
(A)f(x)=- (B)f(x)=-
(C)f(x)= (D)f(x)=-
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集10講練習(xí)卷(解析版) 題型:選擇題
已知等差數(shù)列{an},a1=3,d=2,前n項和為Sn,設(shè)Tn為數(shù)列的前n項和,則Tn=( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-1幾何證明選講練習(xí)卷(解析版) 題型:解答題
如圖,過圓O外一點P作該圓的兩條割線PAB和PCD,分別交圓O于點A,B,C,D,弦AD和BC交于點Q,割線PEF經(jīng)過點Q交圓O于點E,F,點M在EF上,且∠BAD=∠BMF.
(1)求證:PA·PB=PM·PQ;
(2)求證:∠BMD=∠BOD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}的相鄰兩項an,an+1是關(guān)于x的方程x2-2nx+bn=0的兩根,且a1=1.
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn;
(3)設(shè)函數(shù)f(n)=bn-t·Sn(n∈N*),若f(n)>0對任意的n∈N*都成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(四)第二章第一節(jié)練習(xí)卷(解析版) 題型:解答題
如果對任意實數(shù)x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,
(1)求f(2),f(3),f(4)的值.
(2)求+++…+++的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(四)第二章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
函數(shù)f(x)=+lg的定義域是( )
(A)(2,4) (B)(3,4)
(C)(2,3)∪(3,4] (D)[2,3)∪(3,4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:填空題
函數(shù)y=f(x)(x∈R)有下列命題:
①在同一坐標(biāo)系中,y=f(x+1)與y=f(-x+1)的圖象關(guān)于直線x=1對稱;
②若f(2-x)=f(x),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱;
③若f(x-1)=f(x+1),則函數(shù)y=f(x)是周期函數(shù),且2是一個周期;
④若f(2-x)=-f(x),則函數(shù)y=f(x)的圖象關(guān)于(1,0)對稱,其中正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(八)第二章第五節(jié)練習(xí)卷(解析版) 題型:填空題
已知f(3x)=4xlog23+233,則f(2)+f(4)+f(8)+…+f(28)的值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(二)第一章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
已知a,b,c都是實數(shù),則在命題“若a>b,則ac2>bc2”與它的逆命題、否命題、逆否命題這四個命題中,真命題的個數(shù)是( )
(A)4 (B)2 (C)1 (D)0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com