【題目】如圖,要利用一半徑為的圓形紙片制作三棱錐形包裝盒.已知該紙片的圓心為,先以為中心作邊長(zhǎng)為(單位:)的等邊三角形,再分別在圓上取三個(gè)點(diǎn),,使,,分別是以,,為底邊的等腰三角形.沿虛線(xiàn)剪開(kāi)后,分別以,為折痕折起,,,使得,重合于點(diǎn),即可得到正三棱錐.

1)若三棱錐是正四面體,求的值;

2)求三棱錐的體積的最大值,并指出相應(yīng)的值.

【答案】12)最大值為,此時(shí).

【解析】

1)因?yàn)槿忮F是正四面體,所以是正三角形,連結(jié),交于點(diǎn),連結(jié),算出,由即可得到答案;

2)易得,設(shè)函數(shù),利用導(dǎo)數(shù)求得的最大值即可得到體積的最大值.

1)連結(jié),交于點(diǎn),連結(jié),

中,,

.

因?yàn)槿忮F是正四面體,

所以是正三角形,

所以,即,解得.

2)在中,,,

所以高.

可得,.

所以三棱錐的體積

.

設(shè)函數(shù),,

.

得,.列表如下:

0

極大值

所以時(shí)取最大值

所以.

所以,所以.

所以三棱錐體積的最大值為,此時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】陽(yáng)馬和鱉臑(bienao)是《九章算術(shù)·商功》里對(duì)兩種錐體的稱(chēng)謂.如圖所示,取一個(gè)長(zhǎng)方體,按下圖斜割一分為二,得兩個(gè)模一樣的三棱柱,稱(chēng)為塹堵(如圖).再沿其中一個(gè)塹堵的一個(gè)頂點(diǎn)與相對(duì)的棱剖開(kāi),得四棱錐和三棱錐各一個(gè),有一棱與底面垂直的四棱錐稱(chēng)為陽(yáng)馬(四棱錐)余下三棱錐稱(chēng)為鱉臑(三棱錐)若將某長(zhǎng)方體沿上述切割方法得到一個(gè)陽(yáng)馬一個(gè)鱉臑,且該陽(yáng)馬的正視圖和鱉臑的側(cè)視圖如圖所示,則可求出該陽(yáng)馬和鱉臑的表面積之和為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某中學(xué)學(xué)生對(duì)《中華人民共和國(guó)交通安全法》的了解情況,調(diào)查部門(mén)在該校進(jìn)行了一次問(wèn)卷調(diào)查(共12道題),從該校學(xué)生中隨機(jī)抽取40人,統(tǒng)計(jì)了每人答對(duì)的題數(shù),將統(tǒng)計(jì)結(jié)果分成,,,,六組,得到如下頻率分布直方圖.

1)若答對(duì)一題得10分,未答對(duì)不得分,估計(jì)這40人的成績(jī)的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)若從答對(duì)題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人,求恰有1人答對(duì)題數(shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201941021時(shí)整,全球六地(上海和臺(tái)北、布魯塞爾、圣地亞哥、東京和華盛頓同時(shí)召開(kāi)新聞發(fā)布會(huì),宣布人類(lèi)首次利用虛擬射電望遠(yuǎn)鏡,成功捕獲世界上首張黑洞圖像,公布的照片展示了一個(gè)中心為黑色的明亮環(huán)狀結(jié)構(gòu),看上去有點(diǎn)像個(gè)橙色的甜甜圈,其黑色部分是黑洞投下的“陰影”,明亮部分是繞黑洞高速旋轉(zhuǎn)的吸積盤(pán).某同學(xué)作了一張黑洞示意圖,如圖所示,由兩個(gè)同心圓和半個(gè)同心圓環(huán)構(gòu)成圓及圓環(huán)的半徑從內(nèi)到外依次為2,34,5個(gè)單位在圖中隨機(jī)任取一點(diǎn),則該點(diǎn)取自陰影的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程

(1)若曲線(xiàn)只有一個(gè)公共點(diǎn),求的值;

(2)為曲線(xiàn)上的兩點(diǎn),且,求的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】改革開(kāi)放40多年來(lái),城鄉(xiāng)居民生活從解決溫飽的物質(zhì)需求為主逐漸轉(zhuǎn)變到更多元化的精神追求,消費(fèi)結(jié)構(gòu)明顯優(yōu)化.下圖給出了1983~2017年部分年份我國(guó)農(nóng)村居民人均生活消費(fèi)支出與恩格爾系數(shù)(恩格爾系數(shù)是食品支出總額占個(gè)人消費(fèi)支出總額的比重)統(tǒng)計(jì)圖.對(duì)所列年份進(jìn)行分析,則下列結(jié)論錯(cuò)誤的是(

A.農(nóng)村居民人均生活消費(fèi)支出呈增長(zhǎng)趨勢(shì)

B.農(nóng)村居民人均食品支出總額呈增長(zhǎng)趨勢(shì)

C.2011年至2015年農(nóng)村居民人均生活消費(fèi)支出增長(zhǎng)最快

D.2015年到2017年農(nóng)村居民人均生活消費(fèi)支出增長(zhǎng)比率大于人均食品支出總額增長(zhǎng)比率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為實(shí)現(xiàn)有效利用扶貧資金,增加貧困村民的收入,扶貧工作組結(jié)合某貧困村水質(zhì)優(yōu)良的特點(diǎn),決定利用扶貧資金從外地購(gòu)買(mǎi)甲、乙、丙三種魚(yú)苗在魚(yú)塘中進(jìn)行養(yǎng)殖試驗(yàn),試驗(yàn)后選擇其中一種進(jìn)行大面積養(yǎng)殖,已知魚(yú)苗甲的自然成活率為0.8.魚(yú)苗乙,丙的自然成活率均為0.9,且甲、乙、丙三種魚(yú)苗是否成活相互獨(dú)立.

1)試驗(yàn)時(shí)從甲、乙,丙三種魚(yú)苗中各取一尾,記自然成活的尾數(shù)為,求的分布列和數(shù)學(xué)期望;

2)試驗(yàn)后發(fā)現(xiàn)乙種魚(yú)苗較好,扶貧工作組決定購(gòu)買(mǎi)尾乙種魚(yú)苗進(jìn)行大面積養(yǎng)殖,為提高魚(yú)苗的成活率,工作組采取增氧措施,該措施實(shí)施對(duì)能夠自然成活的魚(yú)苗不產(chǎn)生影響.使不能自然成活的魚(yú)苗的成活率提高了50%.若每尾乙種魚(yú)苗最終成活后可獲利10元,不成活則虧損2元,且扶貧工作組的扶貧目標(biāo)是獲利不低于37.6萬(wàn)元,問(wèn)需至少購(gòu)買(mǎi)多少尾乙種魚(yú)苗?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,AB=AC=BC=AA1=2,O,M分別為BC,AA1的中點(diǎn).

1)求證:OM∥平面CB1A1

2)求點(diǎn)M到平面CB1A1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若曲線(xiàn)處的切線(xiàn)與直線(xiàn)垂直,求實(shí)數(shù)a的值;

2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

3)當(dāng)時(shí),若方程有兩個(gè)相異實(shí)根,,求證

查看答案和解析>>

同步練習(xí)冊(cè)答案