【題目】已知直線的方程為,若在x軸上的截距為,且

求直線的交點(diǎn)坐標(biāo);

已知直線經(jīng)過的交點(diǎn),且在y軸上截距是在x軸上的截距的2倍,求的方程.

【答案】(1);(2)

【解析】

1)利用l1l2,可得斜率.利用點(diǎn)斜式可得直線l2的方程,與直線l1l2的交點(diǎn)坐標(biāo)為(2,1);

2)當(dāng)直線l3經(jīng)過原點(diǎn)時(shí),可得方程.當(dāng)直線l3不經(jīng)過過原點(diǎn)時(shí),設(shè)在x軸上截距為a0,則在y軸上的截距的2a倍,其方程為:1,把交點(diǎn)坐標(biāo)(2,1)代入可得a

解:(1)∵l1l2,∴2

∴直線l2的方程為:y02x),化為:y2x3

聯(lián)立,解得

∴直線l1l2的交點(diǎn)坐標(biāo)為(21).

2)當(dāng)直線l3經(jīng)過原點(diǎn)時(shí),可得方程:yx

當(dāng)直線l3不經(jīng)過過原點(diǎn)時(shí),設(shè)在x軸上截距為a0,則在y軸上的截距的2a倍,

其方程為:1,把交點(diǎn)坐標(biāo)(2,1)代入可得:1,解得a

可得方程:2x+y5

綜上可得直線l3的方程為:x2y02x+y50

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)镽,它的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,則下面結(jié)論正確的是(
A.在(1,2)上函數(shù)f(x)為增函數(shù)
B.在(3,4)上函數(shù)f(x)為減函數(shù)
C.在(1,3)上函數(shù)f(x)有極大值
D.x=3是函數(shù)f(x)在區(qū)間[1,5]上的極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直公路上有A,B兩地,甲騎自行車從A地到B地,乙騎著摩托車從B地到A地,到達(dá)A地后立即按原路返回,如圖是甲乙兩人離A地的距離與行駛時(shí)間之間的函數(shù)圖象,根據(jù)圖象解答以下問題:

直接寫出,x之間的函數(shù)關(guān)系式不必寫過程,求出點(diǎn)M的坐標(biāo),并解釋該點(diǎn)坐標(biāo)所表示的實(shí)際意義;

若兩人之間的距離不超過5km時(shí),能夠用無線對(duì)講機(jī)保持聯(lián)系,求在乙返回過程中有多少分鐘甲乙兩人能夠用無線對(duì)講機(jī)保持聯(lián)系;

若甲乙兩人離A地的距離之積為,求出函數(shù)的表達(dá)式,并求出它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四人進(jìn)行選擇題解題比賽,已知每個(gè)選擇題選擇正確得分,否則得分.其測試結(jié)果如下:甲解題正確的個(gè)數(shù)小于乙解題正確的個(gè)數(shù),乙解題正確的個(gè)數(shù)小于丙解題正確的個(gè)數(shù),丙解題正確的個(gè)數(shù)小于丁解題正確的個(gè)數(shù);且丁解題正確的個(gè)數(shù)的倍小于甲解題正確的個(gè)數(shù)的倍,則這四人測試總得分?jǐn)?shù)最少為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知指數(shù)函數(shù)滿足,定義域?yàn)?/span>的函數(shù)是奇函數(shù).

(1)求函數(shù)的解析式;

(2)若函數(shù)上有零點(diǎn),求的取值范圍;

(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司共有職工1500人,其中男職工1050人,女職工450人.為調(diào)查該公司職工每周平均上網(wǎng)的時(shí)間,采用分層抽樣的方法,收集了300名職工每周平均上網(wǎng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))

男職工

女職工

總計(jì)

每周平均上網(wǎng)時(shí)間不超過4個(gè)小時(shí)

每周平均上網(wǎng)時(shí)間超過4個(gè)小時(shí)

70

總計(jì)

300

(Ⅰ)應(yīng)收集多少名女職工樣本數(shù)據(jù)?

(Ⅱ)根據(jù)這300個(gè)樣本數(shù)據(jù),得到職工每周平均上網(wǎng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,,.試估計(jì)該公司職工每周平均上網(wǎng)時(shí)間超過4小時(shí)的概率是多少?

(Ⅲ)在樣本數(shù)據(jù)中,有70名女職工的每周平均上網(wǎng)時(shí)間超過4個(gè)小時(shí).請(qǐng)將每周平均上網(wǎng)時(shí)間與性別的列聯(lián)表補(bǔ)充完整,并判斷是否有95%的把握認(rèn)為“該公司職工的每周平均上網(wǎng)時(shí)間與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年6月份上合峰會(huì)在青島召開,面向高校招募志愿者,中國海洋大學(xué)海洋環(huán)境學(xué)院的8名同學(xué)符合招募條件并審核通過,其中大一、大二、大三、大四每個(gè)年級(jí)各2名.若將這8名同學(xué)分成甲乙兩個(gè)小組,每組4名同學(xué),其中大一的兩名同學(xué)必須分到同一組,則分到乙組的4名同學(xué)中恰有2名同學(xué)是來自于同一年級(jí)的分組方式共有__________種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為考察某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),調(diào)查了 105 個(gè)樣本,統(tǒng)計(jì)結(jié)果為:服藥的共有 55 個(gè)樣本,服藥但患病的仍有 10 個(gè)樣本,沒有服藥且未患病的有 30個(gè)樣本.

(1)根據(jù)所給樣本數(shù)據(jù)完成 列聯(lián)表中的數(shù)據(jù);

(2)請(qǐng)問能有多大把握認(rèn)為藥物有效?

(參考公式:獨(dú)立性檢驗(yàn)臨界值表

概率

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

患病

不患病

合計(jì)

服藥

沒服藥

合計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夾角為銳角,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案