【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會(huì)必須打好的三大攻堅(jiān)戰(zhàn)之一,為堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位考察了甲乙兩種不同的農(nóng)產(chǎn)品加工生產(chǎn)方式,現(xiàn)對(duì)兩種生產(chǎn)方式加工的產(chǎn)品質(zhì)量進(jìn)行測(cè)試并打分對(duì)比,得到如下數(shù)據(jù):

生產(chǎn)方式甲

分值區(qū)間

頻數(shù)

20

30

100

40

10

生產(chǎn)方式乙

分值區(qū)間

頻數(shù)

25

35

60

50

30

其中產(chǎn)品質(zhì)量按測(cè)試指標(biāo)可劃分為:指標(biāo)在區(qū)間上的為特優(yōu)品,指標(biāo)在區(qū)間上的為一等品,指標(biāo)在區(qū)間上的為二等品.

1)用事件表示“按照生產(chǎn)方式甲生產(chǎn)的產(chǎn)品為特優(yōu)品”,估計(jì)的概率;

2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為“特優(yōu)品”與生產(chǎn)方式有關(guān)?

特優(yōu)品

非特優(yōu)品

生產(chǎn)方式甲

生產(chǎn)方式乙

3)根據(jù)打分結(jié)果對(duì)甲乙兩種生產(chǎn)方式進(jìn)行優(yōu)劣比較.

附表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式:,其中

【答案】1;(2)填表見(jiàn)解析,有關(guān);(3)生產(chǎn)方式乙優(yōu)于生產(chǎn)方式甲.

【解析】

1)按照生產(chǎn)方式甲生產(chǎn)的產(chǎn)品為特優(yōu)品個(gè)數(shù)為50,參與打分產(chǎn)品個(gè)數(shù)為200,按照古典概型計(jì)算即可得解;

2)先填表,然后按照公式計(jì)算,然后做出判斷即可;

3)見(jiàn)解析.

1)按照生產(chǎn)方式甲生產(chǎn)的產(chǎn)品為特優(yōu)品個(gè)數(shù)為50,參與打分產(chǎn)品個(gè)數(shù)為200,所以:

;

2)填表如下:

特優(yōu)品

非特優(yōu)品

生產(chǎn)方式甲

50

150

生產(chǎn)方式乙

80

120

,所以有的把握認(rèn)為特優(yōu)品與生產(chǎn)方式有關(guān);

3)生產(chǎn)方式甲生產(chǎn)的產(chǎn)品合格品的概率為,生產(chǎn)方式乙生產(chǎn)的產(chǎn)品合格品的概率為,生產(chǎn)方式乙生產(chǎn)的產(chǎn)品的質(zhì)量指標(biāo)值在之間的較多,因此,可以認(rèn)為生產(chǎn)方式乙生產(chǎn)的合格品的概率更高,且質(zhì)量指標(biāo)值更穩(wěn)定,從而生產(chǎn)方式乙優(yōu)于生產(chǎn)方式甲.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖暅原理指出:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等,例如在計(jì)算球的體積時(shí),構(gòu)造一個(gè)底面半徑和高都與球的半徑相等的圓柱,與半球(如圖①)放置在同一平面上,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐后得到一新幾何體(如圖②),用任何一個(gè)平行于底面的平面去截它們時(shí),可證得所截得的兩個(gè)截面面積相等,由此可證明新幾何體與半球體積相等.現(xiàn)將橢圓所圍成的平面圖形繞y軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體,類比上述方法,運(yùn)用祖暅原理可求得其體積等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C (a>b>0)的左右焦點(diǎn)分別為F1F2點(diǎn).M為橢圓上的一動(dòng)點(diǎn),△MF1F2面積的最大值為4.過(guò)點(diǎn)F2的直線l被橢圓截得的線段為PQ,當(dāng)lx軸時(shí),.

1)求橢圓C的方程;

2)過(guò)點(diǎn)F1作與x軸不重合的直線l,l與橢圓交于A,B兩點(diǎn),點(diǎn)A在直線上的投影N與點(diǎn)B的連線交x軸于D點(diǎn),D點(diǎn)的橫坐標(biāo)x0是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(Ⅰ)求曲線的直角坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與曲線相交于, 兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),左焦點(diǎn)、右焦點(diǎn)都在軸上,點(diǎn)是橢圓上的動(dòng)點(diǎn),的面積的最大值為,在軸上方使成立的點(diǎn)只有一個(gè).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)的兩直線,分別與橢圓交于點(diǎn),和點(diǎn),,且,比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】美團(tuán)外賣和百度外賣兩家公司其“騎手”的日工資方案如下:美團(tuán)外賣規(guī)定底薪70元,每單抽成1元;百度外賣規(guī)定底薪100元,每日前45單無(wú)抽成,超出45單的部分每單抽成6元,假設(shè)同一公司的“騎手”一日送餐單數(shù)相同,現(xiàn)從兩家公司個(gè)隨機(jī)抽取一名“騎手”并記錄其100天的送餐單數(shù),得到如下條形圖:

(Ⅰ)求百度外賣公司的“騎手”一日工資(單位:元)與送餐單數(shù)的函數(shù)關(guān)系;

(Ⅱ)若將頻率視為概率,回答下列問(wèn)題:

①記百度外賣的“騎手”日工資為(單位:元),求的分布列和數(shù)學(xué)期望;

②小明擬到這兩家公司中的一家應(yīng)聘“騎手”的工作,如果僅從日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓上.

求橢圓的標(biāo)準(zhǔn)方程;

已知?jiǎng)又本過(guò)點(diǎn)且與橢圓交于兩點(diǎn).試問(wèn)軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知離心率為的橢圓的左頂點(diǎn)為,左焦點(diǎn)為,及點(diǎn),且、、成等比數(shù)列.

1)求橢圓的方程;

2)斜率不為的動(dòng)直線過(guò)點(diǎn)且與橢圓相交于、兩點(diǎn),記,線段上的點(diǎn)滿足,試求為坐標(biāo)原點(diǎn))面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案