【題目】已知橢圓的中心在原點(diǎn),左焦點(diǎn)、右焦點(diǎn)都在軸上,點(diǎn)是橢圓上的動(dòng)點(diǎn),的面積的最大值為,在軸上方使成立的點(diǎn)只有一個(gè).
(1)求橢圓的方程;
(2)過點(diǎn)的兩直線,分別與橢圓交于點(diǎn),和點(diǎn),,且,比較與的大小.
【答案】(1)(2)
【解析】
(1)根據(jù)已知設(shè)橢圓的方程為,由已知分析得,解得,即得橢圓的方程為.(2)先證明直線的斜率為0或不存在時(shí),.再證明若的斜率存在且不為0時(shí),.
(1)根據(jù)已知設(shè)橢圓的方程為,.
在軸上方使成立的點(diǎn)只有一個(gè),
∴在軸上方使成立的點(diǎn)是橢圓的短軸的端點(diǎn).
當(dāng)點(diǎn)是短軸的端點(diǎn)時(shí),由已知得,
解得.
∴橢圓的方程為.
(2).
若直線的斜率為0或不存在時(shí),且或且.
由,
得.
若的斜率存在且不為0時(shí),設(shè):,
由得,
設(shè),,則,,
于是 .
同理可得.
∴.
∴.
綜上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù).
(1)討論在上的最大值;
(2)有幾個(gè)(,且為常數(shù)),使得函數(shù)在上的最大值為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中將底面為直角三角形且側(cè)棱垂直于底面的三棱柱稱為“塹堵”;底面為矩形,一條側(cè)棱垂直于底面的四棱錐稱之為“陽馬”;四個(gè)面均為直角三角形的四面體稱為“鱉膈”.如圖在塹堵ABC-A1B1C1中,AC⊥BC,且AA1=AB=2.下列說法正確的是( )
A.四棱錐B-A1ACC1為“陽馬”
B.四面體A1C1CB為“鱉膈”
C.四棱錐B-A1ACC1體積最大為
D.過A點(diǎn)分別作AE⊥A1B于點(diǎn)E,AF⊥A1C于點(diǎn)F,則EF⊥A1B
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )
A. B. C. D.
【答案】C
【解析】設(shè)球半徑為R,圓柱的體積為時(shí)圓柱的體積最大為 ,因此材料利用率= ,選C.
點(diǎn)睛:空間幾何體與球接、切問題的求解方法
求解球與棱柱、棱錐的接、切問題時(shí),一般過球心及接、切點(diǎn)作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識(shí)尋找?guī)缀沃性亻g的關(guān)系求解.
【題型】單選題
【結(jié)束】
12
【題目】已知拋物線: 在點(diǎn)處的切線與曲線: 相切,若動(dòng)直線分別與曲線、相交于、兩點(diǎn),則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中, , , 為的中點(diǎn).
(1)證明: 平面;
(2)若,點(diǎn)在平面的射影在上,且側(cè)面的面積為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會(huì)必須打好的三大攻堅(jiān)戰(zhàn)之一,為堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位考察了甲乙兩種不同的農(nóng)產(chǎn)品加工生產(chǎn)方式,現(xiàn)對兩種生產(chǎn)方式加工的產(chǎn)品質(zhì)量進(jìn)行測試并打分對比,得到如下數(shù)據(jù):
生產(chǎn)方式甲 | 分值區(qū)間 | |||||
頻數(shù) | 20 | 30 | 100 | 40 | 10 | |
生產(chǎn)方式乙 | 分值區(qū)間 | |||||
頻數(shù) | 25 | 35 | 50 | 30 |
其中產(chǎn)品質(zhì)量按測試指標(biāo)可劃分為:指標(biāo)在區(qū)間上的為特優(yōu)品,指標(biāo)在區(qū)間上的為一等品,指標(biāo)在區(qū)間上的為二等品.
(1)用事件表示“按照生產(chǎn)方式甲生產(chǎn)的產(chǎn)品為特優(yōu)品”,估計(jì)的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為“特優(yōu)品”與生產(chǎn)方式有關(guān)?
特優(yōu)品 | 非特優(yōu)品 | |
生產(chǎn)方式甲 | ||
生產(chǎn)方式乙 |
(3)根據(jù)打分結(jié)果對甲乙兩種生產(chǎn)方式進(jìn)行優(yōu)劣比較.
附表:
0.10 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動(dòng)圓與圓內(nèi)切且與圓外切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)已知與為平面內(nèi)的兩個(gè)定點(diǎn),過點(diǎn)的直線與軌跡交于,兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線C:的焦點(diǎn)到直線l:的距離為.
(1)求m的值.
(2)如圖,已知拋物線C的動(dòng)弦的中點(diǎn)M在直線l上,過點(diǎn)M且平行于x軸的直線與拋物線C相交于點(diǎn)N,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為廣泛開展垃圾分類的宣傳教育和倡導(dǎo)工作,使市民樹立垃圾分類的環(huán)保意識(shí),學(xué)會(huì)垃圾分類的知識(shí),特舉辦了“垃圾分類知識(shí)競賽".據(jù)統(tǒng)計(jì),在為期1個(gè)月的活動(dòng)中,共有兩萬人次參與網(wǎng)絡(luò)答題.市文明實(shí)踐中心隨機(jī)抽取100名參與該活動(dòng)的市民,以他們單次答題得分作為樣本進(jìn)行分析,由此得到如圖所示的頻率分布直方圖:
(1)求圖中a的值及參與該活動(dòng)的市民單次挑戰(zhàn)得分的平均成績(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表);
(2)若垃圾分類答題挑戰(zhàn)賽得分落在區(qū)間之外,則可獲得一等獎(jiǎng)獎(jiǎng)勵(lì),其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得,若某人的答題得分為96分,試判斷此人是否獲得一等獎(jiǎng);
(3)為擴(kuò)大本次“垃圾分類知識(shí)競賽”活動(dòng)的影響力,市文明實(shí)踐中心再次組織市民組隊(duì)參場有獎(jiǎng)知識(shí)競賽,競賽共分五輪進(jìn)行,已知“光速隊(duì)”與“超能隊(duì)”五輪的成績?nèi)缦卤恚?/span>
成績 | 第一輪 | 第二輪 | 第三輪 | 第四輪 | 第五輪 |
“光速隊(duì)” | 93 | 98 | 94 | 95 | 90 |
“超能隊(duì)” | 93 | 96 | 97 | 94 | 90 |
①分別求“光速隊(duì)”與“超能隊(duì)”五輪成績的平均數(shù)和方差;
②以上述數(shù)據(jù)為依據(jù),你認(rèn)為"光速隊(duì)”與“超能隊(duì)”的現(xiàn)場有獎(jiǎng)知識(shí)競賽成績誰更穩(wěn)定?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com