【題目】已知雙曲線 (a>0,b>0)的左、右焦點分別為F1、F2 , 過點F1且垂直于x軸的直線與該雙曲線的左支交于A、B兩點,AF2、BF2分別交y軸于P、Q兩點,若△PQF2的周長為12,則ab取得最大值時該雙曲線的離心率為( )
A.
B.
C.2
D.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(﹣x﹣1)=f(x﹣1),當x∈[﹣1,0]時,f(x)=﹣x3 , 則關于x的方程f(x)=|cosπx|在[﹣ , ]上的所有實數(shù)解之和為( )
A.﹣7
B.﹣6
C.﹣3
D.﹣1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題恒成立;命題方程表示雙曲線.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M過C(1,-1),D(-1,1)兩點,且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設點P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:y=k(x+2)與圓O:x2+y2=4相交于不重合的A、B兩點,O是坐標原點,且三點A、B、O構成三角形.
(1)求k的取值范圍;
(2)三角形ABO的面積為S,試將S表示成k的函數(shù),并求出它的定義域;
(3)求S的最大值,并求取得最大值時k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了了解本校高一學生每周課外閱讀時間(單位:小時)的情況,按10%的比例對該校高一600名學生進行抽樣統(tǒng)計,將樣本數(shù)據分為5組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10),并將所得數(shù)據繪制成如圖所示的頻率分布直方圖:
(Ⅰ)求圖中的x的值;
(Ⅱ)估計該校高一學生每周課外閱讀的平均時間;
(Ⅲ)為了進一步提高本校高一學生對課外閱讀的興趣,學校準備選拔2名學生參加全市閱讀知識競賽,現(xiàn)決定先在第三組、第四組、第五組中用分層抽樣的放法,共隨機抽取6名學生,再從這6名學生中隨機抽取2名學生代表學校參加全市競賽,在此條件下,求第三組學生被抽取的人數(shù)X的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】霧霾大氣嚴重影響人們的生活,某科技公司擬投資開發(fā)新型節(jié)能環(huán)保產品,策劃部制定投資計劃時,不僅要考慮可能獲得的盈利,而且還要考慮可能出現(xiàn)的虧損,經過市場調查,公司打算投資甲、乙兩個項目,根據預測,甲、乙項目可能的最大盈利率分別為和,可能的最大虧損率分別為和,投資人計劃投資金額不超過9萬元,要求確保可能的資金虧損不超過萬元.
Ⅰ若投資人用x萬元投資甲項目,y萬元投資乙項目,試寫出x,y所滿足的條件,并在直角坐標系內作出表示x,y范圍的圖形.
Ⅱ根據的規(guī)劃,投資公司對甲、乙兩個項目分別投資多少萬元,才能使可能的盈利最大?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com