【題目】在平面直角坐標系中,已知圓,橢圓, 為橢圓的右頂點,過原點且異于軸的直線與橢圓交于兩點, 在軸的上方,直線與圓的另一交點為,直線與圓的另一交點為,
(1)若,求直線的斜率;
(2)設與的面積分別為,求的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),函數(shù)f(x)= ﹣m| + |+1,x∈[﹣ , ],m∈R.
(1)當m=0時,求f( )的值;
(2)若f(x)的最小值為﹣1,求實數(shù)m的值;
(3)是否存在實數(shù)m,使函數(shù)g(x)=f(x)+ m2 , x∈[﹣ , ]有四個不同的零點?若存在,求出m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù) ,x∈R的圖象,只需把函數(shù)y=2sinx,x∈R的圖象上所有的點( )
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍縱坐標不變)
B.向右平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍(縱坐標不變)
C.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)
D.向右平移 個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若存在,使得(是自然對數(shù)的底數(shù)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列,數(shù)學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=lnx,g(x)= +mx+ (m<0),直線l與函數(shù)f(x)的圖象相切,切點的橫坐標為1,且直線l與函數(shù)g(x)的圖象也相切.
(1)求直線l的方程及實數(shù)m的值;
(2)若h(x)=f(x+1)﹣g′(x)(其中g(shù)′(x)是g(x)的導函數(shù)),求函數(shù)h(x)的最大值;
(3)當0<b<a時,求證:f(a+b)﹣f(2a)< .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=( + )x3(a>0,a≠1).
(1)討論函數(shù)f(x)的奇偶性;
(2)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2 ﹣3(ω>0)
(1)若 是最小正周期為π的偶函數(shù),求ω和θ的值;
(2)若g(x)=f(3x)在 上是增函數(shù),求ω的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com