【題目】某城市隨機抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計如下:
API | [0,100] | (100,200] | (200,300] | >300 |
空氣質(zhì)量 | 優(yōu)良 | 輕污染 | 中度污染 | 重度污染 |
天數(shù) | 17 | 45 | 18 | 20 |
記某企業(yè)每天由空氣污染造成的經(jīng)濟損失S(單位:元),空氣質(zhì)量指數(shù)API為.當(dāng)時,企業(yè)沒有造成經(jīng)濟損失;當(dāng)對企業(yè)造成經(jīng)濟損失成直線模型(當(dāng)時造成的經(jīng)濟損失為,當(dāng)時,造成的經(jīng)濟損失);當(dāng)時造成的經(jīng)濟損失為2000元;
(1)試寫出的表達式;
(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有12天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有99%的把握認為該市本年空氣重度污染與供暖有關(guān)?
非重度污染 | 重度污染 | 合計 | |
供暖季 | |||
非供暖季 | |||
合計 | 100 |
P(k2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x,x∈R.
(1)當(dāng)m取何值時,方程|f(x)-2|=m有一個解?兩個解?
(2)若不等式[f(x)]2+f(x)-m>0在R上恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD外接于圓,AC是圓周角∠BAD的角平分線,過點C的切線與AD延長線交于點E,AC交BD于點F.
(1)求證:BD∥CE;
(2)若AB是圓的直徑,AB=4,DE=1,求AD的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系內(nèi),點實施變換后,對應(yīng)點為,給出以下命題:
①圓上任意一點實施變換后,對應(yīng)點的軌跡仍是圓;
②若直線上每一點實施變換后,對應(yīng)點的軌跡方程仍是則;
③橢圓上每一點實施變換后,對應(yīng)點的軌跡仍是離心率不變的橢圓;
④曲線上每一點實施變換后,對應(yīng)點的軌跡是曲線,是曲線上的任意一點,是曲線上的任意一點,則的最小值為.
以上正確命題的序號是___________________(寫出全部正確命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2分別是橢圓C: (a>b>0)的兩個焦點,P(1, )是橢圓上一點,且 |PF1|,|F1F2|, |PF2|成等差數(shù)列.
(1)求橢圓C的標(biāo)準方程;
(2)已知動直線l過點F2 , 且與橢圓C交于A,B兩點,試問x軸上是否存在定點Q,使得 =﹣ 恒成立?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為是橢圓上一點.
(1)求橢圓的標(biāo)準方程;
(2)過橢圓右焦點的直線與橢圓交于兩點,是直線上任意一點.
證明:直線的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若,則稱為的“不動點”,若,則稱為的“穩(wěn)定點”,函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為和,即,,那么,
(1)求函數(shù)的“穩(wěn)定點”;
(2)求證:;
(3)若,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且c= asinC﹣ccosA
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com