【題目】已知向量 =(cos2x, sinx), =(1,cosx),函數(shù)f(x)=2 +m,且當(dāng)x∈[0, ]時(shí),f(x)的最小值為2.
(1)求m的值,并求f(x)圖象的對稱軸方程;
(2)設(shè)函數(shù)g(x)=[f(x)2]﹣f(x),x∈[0, ],求g(x)的最大值.
【答案】
(1)解:∵ =(cos2x, sinx), =(1,cosx),
∴f(x)=2 +m
=2cos2x+2 sinxcosx+m
=cos2x+ sin2x+m+1
=2sin(2x+ )+m+1,
又x∈[0, ],
∴sin(2x+ )∈[ ,1],
∴f(x)的最小值為m+2=2,解得m=0;
∴f(x)=2sin(2x+ )+1;
令2x+ =kπ+ ,k∈Z,
得f(x)圖象的對稱軸方程為x= + ,k∈Z;
(2)解:由(1)知x∈[0, ]時(shí),
sin(2x+ )∈[ ,1],f(x)∈[2,3];
設(shè)f(x)=t,則y=g(t)=t2﹣t,t∈[2,3],
∴t=3時(shí)y取得最大值6;
即函數(shù)g(x)的最大值為6.
【解析】(1)根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算,利用三角恒等變換公式,即可求出結(jié)果;(2)求出f(x)的值域,再用換元法計(jì)算設(shè)f(x)=t,求y=g(t)的最大值即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,設(shè)命題p:函數(shù)f(x)=x2﹣2ax+1﹣2a在區(qū)間[0,1]上與x軸有兩個(gè)不同的交點(diǎn);命題q:g(x)=|x﹣a|﹣ax有最小值.若(¬p)∧q是真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為正方形,AA1=2AB,E為AA1的中點(diǎn),則異面直線BE與CD1所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)某學(xué)校為了支持生物課程基地研究植物生長,計(jì)劃利用學(xué)?盏亟ㄔ煲婚g室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長為(m),三塊種植植物的矩形區(qū)域的總面積為(m2).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(x1 , f(x1),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點(diǎn),且初相φ的終邊經(jīng)過點(diǎn)P(1,﹣ ),若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為 .
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[0, ]時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)貨卡車以每小時(shí)x千米的速度勻速行駛130千米(50≤x≤100)(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油(2+ )升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年推出一種新型家用轎車,購買時(shí)費(fèi)用為14.4萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽車油費(fèi)共0.7萬元,
汽車維修費(fèi)為:第一年無維修費(fèi)用,第二年為0.2萬元,從第三年起,每年的維修費(fèi)用均比上一年增加0.2萬元
(1)設(shè)該輛轎車使用n年的總費(fèi)用(包括購買費(fèi)用,保險(xiǎn)費(fèi),養(yǎng)路費(fèi),汽車費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式.
(2)這種汽車使用多少年報(bào)廢最合算(即該車使用多少年,年平均費(fèi)用最少)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位“準(zhǔn)笑星”在“信陽笑星”選拔賽中,5位評委給出的評分情況如圖所示,記甲、乙兩人的平均得分分別為 、 ,記甲、乙兩人得分的標(biāo)準(zhǔn)差分別為s1、s2 , 則下列判斷正確的是( )
A.< ,s1<s2
B.< ,s1>s2
C.> ,s1<s2
D.> ,s1>s2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com