【題目】如圖,在中, , , 邊上的高,沿折起,使

(Ⅰ)證明:平面平面;

(Ⅱ)的中點,求與底面所成角的正切值。

【答案】(1)見解析;(2).

【解析】此題主要考查面面垂直和異面直線夾角公式的求法,第二問解題的關(guān)鍵是作出輔助線,此題是一道中檔題,也是高考必考題;(1)已知在△ABC中,ADBC上的高,沿AD△ABC折起,使∠BDC=60°,可得AD⊥DC,AD⊥DB,根據(jù)面面垂直的判定定理進行求解;

2)作輔助線,取DC中點F,連接EF,則EF∥BD,可得∠AEF為異面直線AEBD所成的角,再根據(jù)余弦定理和向量公式進行求解;

解(折起前AD是BC邊上的高,

Δ ABD折起后,ADDC,ADDB,又DBDC=D,

AD平面BDC,AD 平面平面BDC平面ABD平面BDC。----4

)由 BDC=及()知DA,DB,DC兩兩垂直,不防設(shè)=1,以D為坐標原點,以所在直線軸建立如圖所示的空間直角坐標系,

易得D0,0,0),B1,0,0),C0,3,0),A0,0),E,0),

=, =10,0,),

夾角的余弦值為

, =

--------12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列, 都是單調(diào)遞增數(shù)列,若將這兩個數(shù)列的項按由小到大的順序排成一列(相同的項視為一項),則得到一個新數(shù)列.

(1)設(shè)數(shù)列分別為等差、等比數(shù)列,若, , ,求;

(2)設(shè)的首項為1,各項為正整數(shù), ,若新數(shù)列是等差數(shù)列,求數(shù)列 的前項和;

(3)設(shè)是不小于2的正整數(shù)),,是否存在等差數(shù)列,使得對任意的,在之間數(shù)列的項數(shù)總是?若存在,請給出一個滿足題意的等差數(shù)列;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0≤φ≤)的部分圖象,其圖象與y軸交于點(0,
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若 , 求-的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|1﹣|
(1)求滿足f(x)=2的x值;
(2)是否存在實數(shù)a,b,且0<a<b<1,使得函數(shù)y=f(x)在區(qū)間[a,b]上的值域為[a,2b],若存在,求出a,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , 的中點.

1)求證:平面平面;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,直線PQ與⊙O切于點AAB是⊙O的弦,∠PAB的平分線AC交⊙O于點C,連接CB,并延長與直線PQ相交于Q點.

(1)求證:QC·ACQC2QA2;

(2)若AQ=6,AC=5,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)= , g(x)是二次函數(shù),若f(g(x))的值域是[0,+∞),則函數(shù)g(x)的值域是( 。
A.(﹣∞,﹣1]∪[1,+∞)
B.(﹣∞,﹣1]∪[0,+∞)
C.[0,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=kx2+2x(k為實常數(shù))為奇函數(shù),函數(shù)g(x)=af(x)﹣1(a>0且a≠1).
(Ⅰ)求k的值;
(Ⅱ)求g(x)在[﹣1,2]上的最大值;
(Ⅲ)當a=時,g(x)≤t2﹣2mt+1對所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)為實數(shù),函數(shù), .

1)求的單調(diào)區(qū)間與極值;

2)求證:當時, .

查看答案和解析>>

同步練習冊答案