正項(xiàng)數(shù)列的前n項(xiàng)和為,且。
(Ⅰ)證明數(shù)列為等差數(shù)列并求其通項(xiàng)公式;
(2)設(shè),數(shù)列的前n項(xiàng)和為,證明:。
(Ⅰ)詳見(jiàn)解析,;(Ⅱ)詳見(jiàn)解析.
【解析】
試題分析:(Ⅰ)證明數(shù)列為等差數(shù)列并求其通項(xiàng)公式,由已知,這是由求,可根據(jù)來(lái)求,因此當(dāng)時(shí),,解得,當(dāng)時(shí),,整理得,從而得數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,可寫(xiě)出數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),數(shù)列的前n項(xiàng)和為,證明:,首先求出的通項(xiàng)公式,,分母是等差數(shù)列連續(xù)兩項(xiàng)積,符合利用拆項(xiàng)相消法求和,即,這樣求得和,利用數(shù)列的單調(diào)性,可證結(jié)論.
試題解析:(Ⅰ)由得:當(dāng)時(shí),,得,
當(dāng)時(shí),,
整理得,又為正項(xiàng)數(shù)列,
故,(),因此數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,
。(6分)
(Ⅱ),
∴,
∵,∴,(8分)
,
∴數(shù)列是一個(gè)遞增數(shù)列 ∴,
綜上所述,。(12分)
考點(diǎn):等差數(shù)列的判斷,求數(shù)列的通項(xiàng)公式,數(shù)列求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(12分)已知正項(xiàng)數(shù)列{}的前n項(xiàng)和為對(duì)任意,
都有。(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若是遞增數(shù)列,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西穩(wěn)派名校學(xué)術(shù)聯(lián)盟高三12月調(diào)研理科數(shù)學(xué)試卷(解析版) 題型:解答題
正項(xiàng)數(shù)列的前n項(xiàng)和為,且。
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
正項(xiàng)數(shù)列的前n項(xiàng)和為Sn,且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:甘肅省蘭州五十五中2011-2012學(xué)年高三第一次月考試題(數(shù)學(xué)理) 題型:解答題
正項(xiàng)數(shù)列的前n項(xiàng)和為Sn,且
(1)求數(shù)列的通項(xiàng)公式; (2)設(shè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com