已知直線在極坐標系中的方程為,圓C在極坐標系中的方程為,求圓C被直線截得的弦長.

解析試題分析:解:直線的直角坐標方程為  2分
圓C的直角坐標方程為  4分
圓C的圓心為(1,0),半徑r=1……5分
圓心C到直線的距離  7分
圓C被直線截得的弦長為  10分
考點:直線與圓位置關系的運用
點評:主要是考查了直線與圓的位置關系的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知平面內兩點(-1,1),(1,3).
(Ⅰ)求過兩點的直線方程;
(Ⅱ)求過兩點且圓心在軸上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓的圓心在點,點,求;
(1)過點的圓的切線方程;
(2)點是坐標原點,連結,,求的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,點,直線,設圓的半徑為,圓心在上.

(1)若圓心也在直線上,過點作圓的切線,求切線的方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C經過P(4,-2),Q(-1,3)兩點,且在y軸上截得的線段長為4,半徑小于5.
(Ⅰ)求直線PQ與圓C的方程;
(Ⅱ)若直線l∥PQ,直線l與圓C交于點A,B且以線段AB為直徑的圓經過坐標原點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓內一點過點的直線交圓 兩點,且滿足 (為參數(shù)).
(1)若,求直線的方程;
(2)若求直線的方程;
(3)求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設直線和圓相交于點。
(1)求弦的垂直平分線方程;(2)求弦的長。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

動圓M過定點A(-,0),且與定圓A´:(x)2y2=12相切.

(1)求動圓圓心M的軌跡C的方程;
(2)過點P(0,2)的直線l與軌跡C交于不同的兩點E、F,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)
已知直線過點與圓相切,
(1)求該圓的圓心坐標及半徑長 (2)求直線的方程

查看答案和解析>>

同步練習冊答案