【題目】如圖,在平面直角坐標系中,角以為始邊,終邊與單位圓相交于點.過點的圓的切線交軸于點,點的橫坐標關(guān)于角的函數(shù)記為. 則下列關(guān)于函數(shù)的說法正確的( )
A. 的定義域是
B. 的圖象的對稱中心是
C. 的單調(diào)遞增區(qū)間是
D. 對定義域內(nèi)的均滿足
【答案】B
【解析】
由三角函數(shù)的定義可知:P(cosα,sinα),則以點P為切點的圓的切線方程為:xcosα+ysinα=1,得:函數(shù)f(α)=,結(jié)合三角函數(shù)的性質(zhì)得解.
由三角函數(shù)的定義可知:P(cosα,sinα),
則以點P為切點的圓的切線方程為:xcosα+ysinα=1,
由已知有cosα≠0,
令y=0,得:x=,
即函數(shù)f(α)=,
由cosα≠0,得:α≠2kπ±,即函數(shù)f(α)的定義域為:
±,k∈z},故A錯誤,
由復(fù)合函數(shù)的單調(diào)性可知:函數(shù)f(α)的增區(qū)間為:
[2kπ,2k),(2k2kπ+π],k∈Z,故C錯誤,
f(α),故D錯誤,
函數(shù)f(α)的對稱中心為(k,0),k∈Z,故B正確.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求實數(shù)的值;
(2)當(dāng)時,函數(shù)存在零點,求實數(shù)的取值范圍;
(3)設(shè)函數(shù),若函數(shù)與的圖像只有一個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生趙敏利用寒假參加社會實踐,對機械銷售公司7月份至12月份銷售某種機械配件的銷售量及銷售單價進行了調(diào)查,銷售單價和銷售量之間的一組數(shù)據(jù)如下表所示:
月份 | 7 | 8 | 9 | 10 | 11 | 12 |
銷售單價(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根據(jù)7至11月份的數(shù)據(jù),求出關(guān)于的回歸直線方程;
(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?
(3)預(yù)計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關(guān)系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應(yīng)定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).
參考公式:回歸直線方程,其中,參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是自然對數(shù)的底數(shù),函數(shù)有零點,且所有零點的和不大于6,則的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《張丘建算經(jīng)》是中國古代數(shù)學(xué)名著.書中有如下問題;“今有十等人大官甲等十人.宮賜金依次差降之.上三人先入,得金四斤,持出;下四人后入,得金三斤,持出;中央三人未到者,亦依等次更給.問各得金幾何及未到三人復(fù)應(yīng)得金幾何.”其意思為:“宮廷依次按照等差數(shù)列賞賜甲乙丙丁戊己庚辛壬癸十位官員,前面甲乙丙三人進來,共領(lǐng)到四斤黃金之后,便拿著離開了;接著庚辛壬癸四人共領(lǐng)到三斤黃金后,也拿著離開了;中間丁戊己三人沒到,也要按照應(yīng)分得的數(shù)量留給他們.問這十人各得黃金多少,并問沒到的三人共應(yīng)該得到多少黃金.”丁戊己三人共應(yīng)得黃金的斤數(shù)為( )
A.3B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了增強學(xué)生的安全意識,某校組織了一次全校2500名學(xué)生都參加的“安全知識”考試,閱卷后,學(xué)校隨機抽取了100份考卷進行分析統(tǒng)計,發(fā)現(xiàn)考試成績(x分)的最低分為51分,最高分為滿分100分,并繪制了如下尚不完整的統(tǒng)計圖表.請根據(jù)圖表提供的信息,解答下列問題:
(1)填空:______,______,______;
(2)將頻數(shù)分布直方圖補充完整;
(3)該校對考試成績?yōu)?/span>的學(xué)生進行獎勵,按成績從高分到低分設(shè)一二三等獎,并且一二三等獎的人數(shù)比例為1:3:6,請你估算全校獲得二等獎的學(xué)生人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在信息時代的今天,隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式,某機構(gòu)對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了100人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成的人數(shù)如下表:(注:年齡單位:歲)
年齡 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 10 | 30 | 30 | 20 | 5 | 5 |
贊成人數(shù) | 8 | 25 | 24 | 10 | 2 | 1 |
(1)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面的2×2列聯(lián)表,并通過計算判斷是否在犯錯誤的概率不超過0.001的前提下認為“使用微信交流的態(tài)度與人的年齡有關(guān)”?
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
若從年齡在[55,65),[65,75)的別調(diào)查的人中各隨機選取兩人進行追蹤調(diào)查,記選中的4人中贊成“使用微信交流”的人數(shù)為X,求隨機變量X的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |
參考公式:K2=,其中n=a+b+c+d.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com