【題目】若直角坐標(biāo)平面內(nèi)的兩個(gè)點(diǎn)P和Q滿足條件:①P和Q都在函數(shù)y=f(x)的圖象上;②P和Q關(guān)于原點(diǎn)對(duì)稱(chēng),則稱(chēng)點(diǎn)對(duì)[P,Q]是函數(shù)y=f(x)的一對(duì)“友好點(diǎn)對(duì)”([P,Q]與[Q,P]看作同一對(duì)“友好點(diǎn)對(duì)”).已知函數(shù) ,則此函數(shù)的“友好點(diǎn)對(duì)”有(
A.0對(duì)
B.1對(duì)
C.2對(duì)
D.3對(duì)

【答案】C
【解析】解:根據(jù)題意:當(dāng)x>0時(shí),﹣x<0,則f(﹣x)=﹣(﹣x)2﹣4(﹣x)=﹣x2+4x,
可知,若函數(shù)為奇函數(shù),可有f(x)=x2﹣4x,
則函數(shù)y=﹣x2﹣4x(x≤0)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)的函數(shù)是y=x2﹣4x
由題意知,作出函數(shù)y=x2﹣4x(x>0)的圖象,
看它與函數(shù)f(x)=log2x(x>0)交點(diǎn)個(gè)數(shù)即可得到友好點(diǎn)對(duì)的個(gè)數(shù).
如圖,
觀察圖象可得:它們的交點(diǎn)個(gè)數(shù)是:2.
即f(x)的“友好點(diǎn)對(duì)”有:2個(gè).
故答案選 C.

根據(jù)題意:“友好點(diǎn)對(duì)”,可知,欲求f(x)的“友好點(diǎn)對(duì)”,只須作出函數(shù)y=﹣x2﹣4x(x≤0)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)的圖象,看它與函數(shù)f(x)=log2x(x>0)交點(diǎn)個(gè)數(shù)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓C1 +y2=1,雙曲線C2 =1(a>0,b>0),若以C1的長(zhǎng)軸為直徑的圓與C2的一條漸近線交于A,B兩點(diǎn),且C1與該漸近線的兩交點(diǎn)將線段AB三等分,則C2的離心率為(
A.
B.5
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+ 的圖象過(guò)點(diǎn)P(1,5).
(1)求實(shí)數(shù)m的值,并證明函數(shù)f(x)是奇函數(shù);
(2)利用單調(diào)性定義證明f(x)在區(qū)間[2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】同時(shí)擲兩個(gè)骰子,
(1)指出點(diǎn)數(shù)的和是3的倍數(shù)的各種情形,并判斷是否為互斥事件;
(2)求點(diǎn)數(shù)的和是3的倍數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=﹣4x2+4ax﹣4a﹣a2在區(qū)間[0,1]內(nèi)有一最大值﹣5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=ax(a>0,a≠1)在[﹣1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1﹣4m) 在[0,+∞)上是增函數(shù),則m= , a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四組中的函數(shù)f(x)與g(x),是同一函數(shù)的是(
A.f(x)=ln(1﹣x)+ln(1+x),g(x)=ln(1﹣x2
B.f(x)=lgx2 , g(x)=2lgx
C.f(x)= ? ,g(x)=
D.f(x)= ,g(x)=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x+1|(x∈R)
(1)證明:函數(shù)f(x)是偶函數(shù);
(2)利用絕對(duì)值及分段函數(shù)知識(shí),將函數(shù)解析式寫(xiě)成分段函數(shù)的形式,然后畫(huà)出函數(shù)圖象,并寫(xiě)出函數(shù)的值域;
(3)在同一坐標(biāo)系中畫(huà)出直線y=x+2,觀察圖象寫(xiě)出不等式f(x)>x+2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足csinA=acosC
(1)求角C大。
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值時(shí)角A,B的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案