【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足csinA=acosC
(1)求角C大;
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值時(shí)角A,B的大小.

【答案】
(1)解:由正弦定理得 sinCsinA=sinAcosC,

因?yàn)?<A<π,所以sinA>0.從而sinC=cosC,

又cosC≠0,所以tanC=1,C=


(2)解:有(1)知,B= ﹣A,于是

sinA﹣cos(B+ )= sinA+cosA

=2sin(A+ ).

因?yàn)?<A< ,所以 <A+

從而當(dāng)A+ = ,即A= 時(shí)

2sin(A+ )取得最大值2.

綜上所述 sinA﹣cos(B+ )的最大值為2,此時(shí)A= ,B=


【解析】(1)利用正弦定理化簡(jiǎn)csinA=acosC.求出tanC=1,得到C= .(2)B= ﹣A,化簡(jiǎn) sinA﹣cos(B+ ),通過(guò)0<A< ,推出 <A+ ,求出2sin(A+ )取得最大值2.得到A,B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直角坐標(biāo)平面內(nèi)的兩個(gè)點(diǎn)P和Q滿足條件:①P和Q都在函數(shù)y=f(x)的圖象上;②P和Q關(guān)于原點(diǎn)對(duì)稱(chēng),則稱(chēng)點(diǎn)對(duì)[P,Q]是函數(shù)y=f(x)的一對(duì)“友好點(diǎn)對(duì)”([P,Q]與[Q,P]看作同一對(duì)“友好點(diǎn)對(duì)”).已知函數(shù) ,則此函數(shù)的“友好點(diǎn)對(duì)”有(
A.0對(duì)
B.1對(duì)
C.2對(duì)
D.3對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)報(bào)道,某公司的33名職工的月工資(以元為單位)如下:

職務(wù)

董事長(zhǎng)

副董事長(zhǎng)

董事

總經(jīng)理

經(jīng)理

管理員

職員

人數(shù)

1

1

2

1

5

3

20

工資

5 500

5 000

3 500

3 000

2 500

2 000

1 500

(1)求該公司職工月工資的平均數(shù)、中位數(shù)、眾數(shù);
(2)假設(shè)副董事長(zhǎng)的工資從5000元提升到20000元,董事長(zhǎng)的工資從5500元提升到30000元,那么新的平均數(shù)、中位數(shù)、眾數(shù)又是什么?(精確到元)
(3)你認(rèn)為哪個(gè)統(tǒng)計(jì)量更能反映這個(gè)公司員工的工資水平?結(jié)合此問(wèn)題談一談你的看法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,圓的極坐標(biāo)方程為.若以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立平面直角坐標(biāo)系.

)求圓的參數(shù)方程;

)在直角坐標(biāo)系中,點(diǎn)是圓上動(dòng)點(diǎn),試求的最大值,并求出此時(shí)點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知焦點(diǎn)在x正半軸上,頂點(diǎn)為坐標(biāo)系原點(diǎn)的拋物線過(guò)點(diǎn)A(1,﹣2).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過(guò)拋物線的焦點(diǎn)F的直線l與拋物線交于兩點(diǎn)M、N,且△MNO(O為原點(diǎn))的面積為2 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知焦點(diǎn)在x軸上的橢圓 =1(b>0)有一個(gè)內(nèi)含圓x2+y2= ,該圓的垂直于x軸的切線交橢圓于點(diǎn)M,N,且 (O為原點(diǎn)).

(1)求b的值;
(2)設(shè)內(nèi)含圓的任意切線l交橢圓于點(diǎn)A、B.求證: ,并求| |的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱錐P﹣ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且這四個(gè)頂點(diǎn)都在半徑為2的球面上,PA=2PB,則這個(gè)三棱錐的三個(gè)側(cè)棱長(zhǎng)的和的最大值為( 。
A.16
B.
C.
D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x﹣alnx(a∈R).
(Ⅰ)當(dāng)a=2時(shí),求曲線f(x)在x=1處的切線方程;
(Ⅱ)設(shè)函數(shù)h(x)=f(x)+ , 求函數(shù)h(x)的單調(diào)區(qū)間;
(Ⅲ)若g(x)=﹣ , 在[1,e](e=2.71828…)上存在一點(diǎn)x0 , 使得f(x0)≤g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)戶計(jì)劃建造一個(gè)室內(nèi)面積為800m2的矩形蔬菜溫室,在溫室外,沿左、右兩側(cè)與后側(cè)各保留1m寬的通道,沿前側(cè)保留3m的空地(如圖所示),當(dāng)矩形溫室的長(zhǎng)和寬分別為多少時(shí),總占地面積最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案