如圖,四棱錐的底面為平行四邊形,平面,中點.

(1)求證:平面
(2)若,求證:平面.
(1)詳見解析;(2)詳見解析.

試題分析:(1)根據(jù)平行四邊形對角線互相平分的這個性質先連接,找到的交點的中點,利用三角形的中位線平行于底邊證明,最后利用直線與平面平行的判定定理證明平面;(2)先證明平面,得到,再由已知條件證明,最終利用直線與平面垂直的判定定理證明平面.
試題解析:(1)連接于點,連接
因為底面是平行四邊形,所以點的中點,
的中點,所以,                     4分
因為平面,平面,所以平面        6分

(2)因為平面,平面,所以,         8分
因為,平面,平面,所以平面,
因為平面,所以,                     10分
因為平面平面,所以,           12分
又因為,,平面,平面,
所以平面                              14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在多面體中,四邊形是矩形,,,平面.

(1)若點是中點,求證:.
(2)求證:.
(3)若.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐中,底面是正方形,側面是正三角形,平面底面

(I) 證明:平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直三棱柱中,,D是AC的中點.

(Ⅰ)求證:平面;
(Ⅱ)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐P-ABCD中,PA⊥平面ABCD,E為AD的中點,ABCE為菱形,∠BAD=120°,PA=AB,G、F分別是線段CE、PB的中點.

(Ⅰ) 求證:FG∥平面PDC;
(Ⅱ) 求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖1,四棱錐中,底面,面是直角梯形,為側棱上一點.該四棱錐的俯視圖和側(左)視圖如圖2所示.   
(Ⅰ)證明:平面
(Ⅱ)證明:∥平面;
(Ⅲ)線段上是否存在點,使所成角的余弦值為?若存在,找到所有符合要求的點,并求的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面幾何里有射影定理:設△ABC的兩邊AB⊥AC,D是A點在BC上的射影,則AB2=BD·BC.拓展到空間,在四面體A—BCD中,DA⊥面ABC,點O是A在面BCD內的射影,且O在面BCD內,類比平面三角形射影定理,△ABC,△BOC,△BDC三者面積之間關系為           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓臺的上底半徑為2cm,下底半徑為4cm,圓臺的高為cm,則側面展開圖所在扇形的圓心角=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四棱錐的底面是直角梯形,,側面為正三角形,,.如圖所示.

(1) 證明:平面;
(2) 求四棱錐的體積

查看答案和解析>>

同步練習冊答案