在四棱錐中,底面是正方形,側(cè)面是正三角形,平面底面

(I) 證明:平面
(II)求二面角的余弦值.
(I)見解析;(II)

試題分析:(I)因為平面VAD⊥平面ABCD,平面VAD∩平面ABCD=AD,又AB在平面ABCD內(nèi),AD⊥AB,
所以AB⊥平面VAD;(II)法一:先做出所求二面角的平面角,再由余弦定理求平面角的余弦值,既得所求;法二:設(shè)AD的中點為O,連結(jié)VO,則VO⊥底面ABCD,又設(shè)正方形邊長為1,建立空間直角坐標(biāo)系,寫出各個點的空間坐標(biāo),分別求平面VAD的法向量和平面VDB的法向量,可得結(jié)論.
試題解析:(Ⅰ)因為平面VAD⊥平面ABCD,平面VAD∩平面ABCD=AD,又AB在平面ABCD內(nèi),AD⊥AB,
所以AB⊥平面VAD.    3分
(Ⅱ)由(Ⅰ)知AD⊥AB,AB⊥AV.依題意設(shè)AB=AD=AV=1,所以BV=BD=. 6分

設(shè)VD的中點為E,連結(jié)AE、BE,則AE⊥VD,BE⊥VD,
所以∠AEB是面VDA與面VDB所成二面角的平面角.      9分
又AE=,BE=,所以cos∠AEB==
12分
(方法二)
(Ⅰ)同方法一.    3分
(Ⅱ)設(shè)AD的中點為O,連結(jié)VO,則VO⊥底面ABCD.
又設(shè)正方形邊長為1,建立空間直角坐標(biāo)系如圖所示.    4分

則,A(,0,0),    B(,1,0),
D( ,0,0),   V(0,0,);
    7分
由(Ⅰ)知是平面VAD的法向量.設(shè)是平面VDB的法向量,則
    10分
,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正三棱柱中,,上的動點.

(1)求五面體的體積;
(2)當(dāng)在何處時,平面,請說明理由;
(3)當(dāng)平面時,求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面為平行四邊形,平面,中點.

(1)求證:平面;
(2)若,求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直三棱柱中,AB=BC,,Q是AC上的點,AB1//平面BC1Q.

(Ⅰ)確定點Q在AC上的位置;
(Ⅱ)若QC1與平面BB1C1C所成角的正弦值為,求二面角Q-BC1—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面凸多面體的體積為,的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在半徑為3的球面上有三點,=90°,,球心O到平面的距離是,則兩點的球面距離是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知正方體上、下底面中心分別為,將正方體繞直線旋轉(zhuǎn)一周,其中由線段旋轉(zhuǎn)所得圖形是(      )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過圓錐高的三等分點作平行于底面的截面,它們把圓錐側(cè)面分成的三部分的面積之比為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正四棱錐中,,點M,N分別在PA,BD上,且

(Ⅰ)求異面直線MN與AD所成角;
(Ⅱ)求證:∥平面PBC;
(Ⅲ)求MN與平面PAB所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案