【題目】已知曲線的參數(shù)方程為為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線,以原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)若直線與曲線交于兩點(diǎn),與曲線交于兩點(diǎn),求的值.

【答案】(1)曲線的極坐標(biāo)方程為.,曲線的直角坐標(biāo)方程為(2)

【解析】

1)由曲線的參數(shù)方程能求出曲線的直角坐標(biāo)系方程,從而根據(jù)能求出曲線的極坐標(biāo)方程;由得到代入圓,化簡(jiǎn)可得曲線的直角坐標(biāo)方程(2)將代入,得,根據(jù)極坐標(biāo)的幾何意義,. 分別表示點(diǎn),的極徑,因此求得,將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,再設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)為,根據(jù)韋達(dá)定理,即可求出結(jié)果.

1)已知曲線的參數(shù)方程為為參數(shù)),

消去參數(shù).

,

即曲線的極坐標(biāo)方程為.

又由已知

代入

曲線的直角坐標(biāo)方程為.

2)將代入,得.

又直線的參數(shù)方程為為參數(shù)),

代入,整理得,

分別記兩點(diǎn)對(duì)應(yīng)的參數(shù)為,則

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:指數(shù)函數(shù)R上是單調(diào)減函數(shù);命題q:關(guān)于x的方程有實(shí)根,

1)若p為真,求a的范圍

2)若q為真,求的范圍

3)若pq為真,pq為假,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

2)設(shè),若,恒有成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的右焦點(diǎn)為,左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為、,連結(jié)并延長(zhǎng)交橢圓于點(diǎn),連結(jié),,記橢圓的離心率為.

1)若,.

①求橢圓的標(biāo)準(zhǔn)方程;

②求的面積之比.

2)若直線和直線的斜率之積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有關(guān)于的一元二次方程

)若是從四個(gè)數(shù)中任取的一個(gè)數(shù),是從三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)設(shè),求函數(shù)的單調(diào)增區(qū)間;

2)設(shè),求證:存在唯一的,使得函數(shù)的圖象在點(diǎn)處的切線l與函數(shù)的圖象也相切;

3)求證:對(duì)任意給定的正數(shù)a,總存在正數(shù)x,使得不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(為常數(shù)),曲線在與軸的交點(diǎn)A處的切線與軸平行.

(1)的值及函數(shù)的單調(diào)區(qū)間;

(2)若存在不相等的實(shí)數(shù)使成立,試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)口袋內(nèi)有個(gè)不同的紅球,個(gè)不同的白球,

(1)從中任取個(gè)球,紅球的個(gè)數(shù)不比白球少的取法有多少種?

(2)若取一個(gè)紅球記分,取一個(gè)白球記分,從中任取個(gè)球,使總分不少于分的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處的切線方程為.

(1)求函數(shù)的解析式;

(2)若關(guān)于的方程恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的值;

(3)數(shù)列滿足.

證明:①

.

查看答案和解析>>

同步練習(xí)冊(cè)答案