【題目】設(shè)橢圓的一個焦點(diǎn)為,四條直線,所圍成的區(qū)域面積為.

1)求的方程;

2)設(shè)過的直線交于不同的兩點(diǎn),設(shè)弦的中點(diǎn)為,且為原點(diǎn)),求直線的方程.

【答案】12

【解析】

1)由題意,結(jié)合橢圓的性質(zhì)可得的方程組,解方程組即可求得橢圓的標(biāo)準(zhǔn)方程.

2)因?yàn)橹本過定點(diǎn),設(shè)出直線方程,并聯(lián)立橢圓方程.化簡后利用判別式求得斜率的取值范圍.由三角形幾何性質(zhì)可知,結(jié)合平面向量數(shù)量積定義及韋達(dá)定理求得斜率的方程,解方程即可求得斜率,進(jìn)而可得直線的方程.

1)依題意得,解得

橢圓的方程為

2)易知直線的斜率存在,并設(shè)直線方程為,

聯(lián)立橢圓,,化簡得,

設(shè)、,

,

,

由三角形幾何性質(zhì)可知

,

,

代入上式得

化簡得,所以

故所求的直線方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工作人員需進(jìn)入核電站完成某項(xiàng)具有高輻射危險的任務(wù),每次只派一個人進(jìn)去,且每個人只派一次,工作時間不超過10分鐘,如果前一個人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個人.現(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務(wù)的概率分別為,,假設(shè),,互不相等,且假定各人能否完成任務(wù)的事件相互獨(dú)立.

(1)如果按甲最先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率.若改變?nèi)齻人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?

(2)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的數(shù)學(xué)期望達(dá)到最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點(diǎn)在線段上移動,有下列判斷:①平面平面;②平面平面;③三棱錐的體積不變;④平面.其中,正確的是______.(把所有正確的判斷的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法不正確的是(

A.為真為真的充分不必要條件;

B.若數(shù)據(jù)的平均數(shù)為1,則的平均數(shù)為2;

C.在區(qū)間上隨機(jī)取一個數(shù),則事件發(fā)生的概率為

D.設(shè)從總體中抽取的樣本為若記樣本橫、縱坐標(biāo)的平均數(shù)分別為,則回歸直線必過點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于數(shù)列,若滿足,則稱數(shù)列“0-1數(shù)列.定義變換“0-1數(shù)列中原有的每個1都變成0,1,原有的每個0都變成1,0.例如:1,0,1,則設(shè)“0-1數(shù)列,令

3

) 若數(shù)列求數(shù)列;

) 若數(shù)列共有10項(xiàng),則數(shù)列中連續(xù)兩項(xiàng)相等的數(shù)對至少有多少對?請說明理由;

)若01,記數(shù)列中連續(xù)兩項(xiàng)都是0的數(shù)對個數(shù)為,.求關(guān)于的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

1)求函數(shù)的定義域(用區(qū)間表示);

2)討論函數(shù)上的單調(diào)性;

3)若,求上滿足條件的集合(用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市房管局為了了解該市市民月至月期間買二手房情況,首先隨機(jī)抽樣其中名購房者,并對其購房面積(單位:平方米,)進(jìn)行了一次調(diào)查統(tǒng)計,制成了如圖所示的頻率分布直方圖,接著調(diào)查了該市月至月期間當(dāng)月在售二手房均價(單位:萬元/平方米),制成了如圖所示的散點(diǎn)圖(圖中月份代碼分別對應(yīng)月至月).

1)試估計該市市民的購房面積的中位數(shù);

2)現(xiàn)采用分層抽樣的方法從購房面積位于位市民中隨機(jī)抽取人,再從這人中隨機(jī)抽取人,求這人的購房面積恰好有一人在的概率;

3)根據(jù)散點(diǎn)圖選擇兩個模型進(jìn)行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程,分別為,并得到一些統(tǒng)計量的值如下表所示:

0.000591

0.000164

0.006050

請利用相關(guān)指數(shù)判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預(yù)測出月份的二手房購房均價(精確到

(參考數(shù)據(jù)),,,,,

(參考公式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,判斷在定義域上的單調(diào)性;

2)若對定義域上的任意的,有恒成立,求實(shí)數(shù)a的取值范圍;

3)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,展現(xiàn)中國文化陰陽轉(zhuǎn)化、對立統(tǒng)一的哲學(xué)理念.定義:圖象能將圓的周長和面積同時等分成兩部分的函數(shù)稱為圓的一個太極函數(shù),則下列命題正確的是___________.

1)函數(shù)可以同時是無數(shù)個圓的太極函數(shù);

2)函數(shù)可以是某個圓的太極函數(shù)

3)若函數(shù)是某個圓的太極函數(shù),則函數(shù)的圖象一定是中心對稱圖形;

4)對于任意一個圓,其太極函數(shù)有無數(shù)個.

查看答案和解析>>

同步練習(xí)冊答案