如圖所示,四邊形為直角梯形,,為等邊三角形,且平面平面,中點.

(1)求證:;
(2)求平面與平面所成的銳二面角的余弦值;
(3)在內(nèi)是否存在一點,使平面,如果存在,求的長;如果不存在,說明理由.

(1)參考解析;(2);(3),

解析試題分析:(1)根據(jù)題意,由于三角形ABE是等邊三角形,所以以線段AB的中點為坐標原點建立空間直角坐標系.寫出相應點的坐標,表示出向量AB與向量DE,并求出兩個向量的數(shù)量積為零,所以兩個向量垂直,及對應的兩條直線垂直.
(2)平面與平面垂直關鍵是求出兩個平面的法向量,再根據(jù)法向量的夾角的余弦值的絕對值等于銳二面角的余弦值.
(3)用待定系數(shù)的方法,假設存在該點Q,要滿足平面,只需要向量PQ,與平面內(nèi)任一兩條直線所對應的向量的數(shù)量積為零即可,從而求出點Q的坐標即線段PQ的長.
試題解析:(1)證明:取中點,連結(jié),
因為△是正三角形,所以.
因為四邊形是直角梯形,,
所以四邊形是平行四邊形,,
,所以 .
所以平面,
所以.
(2)解:因為平面平面,
,所以平面
所以.
如圖所示,以為原點建立空間直角坐標系.

,,,.
所以 ,,
設平面的法向量為,則
,
,則,.所以.
同理求得平面的法向量為,設平面與平面所成的銳二面角為,則
.
所以平面與平面所成的銳二面角的余弦值為.
(3)解:設,因為
所以,,.
依題意
解得 .
符合點在三角形內(nèi)的條件.
所以,存在點,使平面,此時.
考點:1.空間坐標系的建立.2.平面與平面所成的角.3.直線與平面垂直.4.代數(shù)運算能力.5.向量的數(shù)量積.6.相應的公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐S-ABCD中,ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=AD,E為CD上一點,且CE=3DE.

(1)求證:AE⊥平面SBD.
(2)M,N分別為線段SB,CD上的點,是否存在M,N,使MN⊥CD且MN⊥SB,若存在,確定M,N的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,OACBD的交點,EPB上任意一點.

(1)證明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,并且二面角B-AE-C的大小為45°,求PDAD的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,平面PAC⊥平面ABCD,且PAAC,PAAD=2.四邊形ABCD滿足BCADABAD,ABBC=1.點EF分別為側(cè)棱PB,PC上的點,且λ.

(1)求證:EF∥平面PAD.
(2)當λ時,求異面直線BFCD所成角的余弦值;
(3)是否存在實數(shù)λ,使得平面AFD⊥平面PCD?若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,點M在線段EC上且不與E、C垂合.

(1)當點M是EC中點時,求證:BM//平面ADEF;
(2)當平面BDM與平面ABF所成銳二面角的余弦值為時,求三棱錐M—BDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖在四棱錐中,底面是邊長為的正方形,側(cè)面底面,且

(1)求證:面平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在長方體,中,,點在棱AB上移動.

(Ⅰ)證明:;
(Ⅱ)當的中點時,求點到面的距離;
(Ⅲ)等于何值時,二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖(1),等腰直角三角形的底邊,點在線段上,,現(xiàn)將沿折起到的位置(如圖(2)).

(Ⅰ)求證:;
(Ⅱ)若,直線與平面所成的角為,求長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知棱長為1的正方體ABCD-A1B1C1D1中,E、F、M分別是A1C1、A1D和B1A上任一點,求證:平面A1EF∥平面B1MC

查看答案和解析>>

同步練習冊答案