已知棱長為1的正方體ABCD-A1B1C1D1中,E、F、M分別是A1C1、A1D和B1A上任一點,求證:平面A1EF∥平面B1MC

證明:如圖建立空間直角坐標系,

=(-1,1,0),=(-1,0,-1)
=(1,0,1), =(0,-1,-1)
   設(shè),、     ,且均不為0)
設(shè)、分別是平面A1EF與平面B1MC的法向量,
  由      可得     即   
                   
解得:=(1,1,-1)
   由     可得     即   
                     
解得=(-1,1,-1),所以=-, ,
所以平面A1EF∥平面B1MC.  

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,四邊形為直角梯形,,為等邊三角形,且平面平面,中點.

(1)求證:;
(2)求平面與平面所成的銳二面角的余弦值;
(3)在內(nèi)是否存在一點,使平面,如果存在,求的長;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(I)求證:A1C⊥平面BCDE;
(II)若M是A1D的中點,求CM與平面A1BE所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖, 是邊長為的正方形,平面,,,與平面所成角為

(I)設(shè)是線段上一個動點,試確定點的位置, 使得平面,并證明你的結(jié)論 ;
(Ⅱ)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知是邊長為2的等邊三角形,平面,上一動點.
(1)若的中點,求直線與平面所成的角的正弦值;
(2)在運動過程中,是否有可能使平面?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直三棱柱ABC-A1B1C1底面△ABC中,CA=CB=1,
∠BCA=90°,棱AA1=2,M是A1B1的中點.
(1)求cos()的值;
(2)求證:A1B⊥C1M.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知直線上兩點A,B的坐標分別為,,且直線與直線垂直,則的值為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分l2分)(注意:在試題卷上作答無效)

如圖,四棱錐中, ,,側(cè)面為等邊三角形..
(I)     證明:
(II)   求AB與平面SBC所成角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

直線xcosα+y+2=0的傾斜角的取值范圍是(  )

A.[-,] B.[]
C.[0,]∪[,π) D.[0,]∪[,π]

查看答案和解析>>

同步練習冊答案