如圖,在四棱錐P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四邊形ABCD滿足BC∥AD,AB⊥AD,AB=BC=1.點E,F分別為側(cè)棱PB,PC上的點,且=λ.
(1)求證:EF∥平面PAD.
(2)當(dāng)λ=時,求異面直線BF與CD所成角的余弦值;
(3)是否存在實數(shù)λ,使得平面AFD⊥平面PCD?若存在,試求出λ的值;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是邊長為的正方形,平面,,,與平面所成角為.
(1)求證:平面;
(2)求二面角的余弦值;
(3)設(shè)點是線段上一個動點,試確定點的位置,使得平面,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設(shè)點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是邊長為的菱形,,底面, ,為的中點,為的中點.
(Ⅰ)證明:直線平面;
(Ⅱ)求異面直線與所成角的大小;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四邊形為直角梯形,,,為等邊三角形,且平面平面,,為中點.
(1)求證:;
(2)求平面與平面所成的銳二面角的余弦值;
(3)在內(nèi)是否存在一點,使平面,如果存在,求的長;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是邊長為2的等邊三角形,AE=1,CD與平面ABDE所成角的正弦值為.
(Ⅰ)若F是線段CD的中點,證明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分l2分)(注意:在試題卷上作答無效)
如圖,四棱錐中, ∥,,側(cè)面為等邊三角形..
(I) 證明:
(II) 求AB與平面SBC所成角的大小。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com