【題目】 【2016高考新課標Ⅲ文數(shù)】已知拋物線:的焦點為,平行于軸的兩條直線分別交于兩點,交的準線于兩點.
(I)若在線段上,是的中點,證明;
(II)若的面積是的面積的兩倍,求中點的軌跡方程.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】
試題分析:(Ⅰ)設(shè)出與軸垂直的兩條直線,然后得出的坐標,然后通過證明直線與直線的斜率相等即可證明結(jié)果了;(Ⅱ)設(shè)直線與軸的交點坐標,利用面積可求得,設(shè)出的中點,根據(jù)與軸是否垂直分兩種情況結(jié)合求解.
試題解析:由題設(shè).設(shè),則,且
.
記過兩點的直線為,則的方程為. .....3分
(Ⅰ)由于在線段上,故.
記的斜率為,的斜率為,則,
所以. ......5分
(Ⅱ)設(shè)與軸的交點為,
則.
由題設(shè)可得,所以(舍去),.
設(shè)滿足條件的的中點為.
當與軸不垂直時,由可得.
而,所以.
當與軸垂直時,與重合,所以,所求軌跡方程為. ....12分
科目:高中數(shù)學 來源: 題型:
【題目】為了讓學生更多的了解“數(shù)學史”知識,梁才學校高二年級舉辦了一次“追尋先哲的足跡,傾聽數(shù)學的聲音”的數(shù)學史知識競賽活動,共有800名學生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,統(tǒng)計結(jié)果見下表.請你根據(jù)頻率分布表解答下列問題:
序號 | 分組 | 組中值 | 頻數(shù) | 頻率 |
(i) | (分數(shù)) | (Gi) | (人數(shù)) | (Fi) |
1 | 65 | ① | 0.12 | |
2 | 75 | 20 | ② | |
3 | 85 | ③ | 0.24 | |
4 | 95 | ④ | ⑤ | |
合計 | 50 | 1 |
(1)填充頻率分布表中的空格;
(2)為鼓勵更多的學生了解“數(shù)學史”知識,成績不低于85分的同學能獲獎,請估計在
參加的800名學生中大概有多少名學生獲獎?
(3)在上述統(tǒng)計數(shù)據(jù)的分析中有一項計算見算法流程圖,求輸出的S的值.查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=mx2﹣2mx+m﹣1(m>0)與x軸的交點為A,B.
(1)求拋物線的頂點坐標;
(2)橫、縱坐標都是整數(shù)的點叫做整點.
①當m=1時,求線段AB上整點的個數(shù);
②若拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)恰有6個整點,結(jié)合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形是直角梯形,.
(1)求二面角的余弦值;
(2)設(shè)是棱上一點,是的中點,若與平面所成角的正弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線,問是否存在實數(shù)a,使得經(jīng)過點(1,a)能夠作出該曲線的兩條切線?若存在求出實數(shù)a的取值范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在銳角△ABC中,a,b,c為角A,B,C所對的邊,且(b﹣2c)cosA=a﹣2acos2 .
(1)求角A的值;
(2)若a= ,則求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心在軸上,半徑為1,直線被圓所截的弦長為,且圓心在直線的下方.
(1)求圓的方程;
(2)設(shè),若圓是的內(nèi)切圓,求的面積的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直三棱柱中, 、分別是棱、的中點,點在棱上,已知, , .
(1)求證: 平面;
(2)設(shè)點在棱上,當為何值時,平面平面?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com