【題目】近年來,隨著我市經(jīng)濟的快速發(fā)展,政府對民生也越來越關(guān)注. 市區(qū)現(xiàn)有一塊近似正三角形土地ABC(如圖所示),其邊長為2百米,為了滿足市民的休閑需求,市政府擬在三個頂點處分別修建扇形廣場,即扇形DBE,DAG和ECF,其中、與分別相切于點D、E,且與無重疊,剩余部分(陰影部分)種植草坪. 設(shè)BD長為x(單位:百米),草坪面積為S(單位:百米2).
(1)試用x分別表示扇形DAG和DBE的面積,并寫出x的取值范圍;
(2)當x為何值時,草坪面積最大?并求出最大面積.
【答案】(1) (2) 當BD長為百米時,草坪面積最大,最大值為()百米2.
【解析】試題分析:(1)根據(jù)扇形面積公式可得結(jié)果,根據(jù)條件可得,且BD長小于高,解得x的取值范圍;(2)列出草坪面積函數(shù)關(guān)系式,根據(jù)二次函數(shù)對稱軸與定義區(qū)間位置關(guān)系求最值
試題解析:(1)如圖, ,則, ,
在扇形中,弧長= ,
所以,
同理, ,
因為弧DG與弧EF無重疊,
所以,即,則,
又三個扇形都在三角形內(nèi)部,則,
所以.
(2)因為,
所以=
=,
所以當時, 取得最大值為,
答:當BD長為百米時,草坪面積最大,最大值為()百米2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評價某個維度的測評中,分“優(yōu)秀、合格、尚待改進”三個等級進行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計表如下: 表1:男生表2:女生
等級 | 優(yōu)秀 | 合格 | 尚待改進 | 等級 | 優(yōu)秀 | 合格 | 尚待改進 | |
頻數(shù) | 15 | x | 5 | 頻數(shù) | 15 | 3 | y |
(1)從表二的非優(yōu)秀學(xué)生中隨機選取2人交談,求所選2人中恰有1人測評等級為合格的概率;
(2)由表中統(tǒng)計數(shù)據(jù)填寫下邊2×2列聯(lián)表,并判斷是否有90%的把握認為“測評結(jié)果優(yōu)秀與性別有關(guān)”.
男生 | 女生 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 |
參考數(shù)據(jù)與公式:
K2= ,其中n=a+b+c+d.
臨界值表:
P(K2>k0) | 0.05 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,直線l1的參數(shù)方程為 ,(t為參數(shù)),直線l2的參數(shù)方程為 ,(m為參數(shù)).設(shè)l1與l2的交點為P,當k變化時,P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設(shè)l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點,求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知q和n均為給定的大于1的自然數(shù),設(shè)集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.
(1)當q=2,n=3時,用列舉法表示集合A.
(2)設(shè)s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.證明:若an<bn,則s<t.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知圓心在直線上的圓經(jīng)過點,但不經(jīng)過坐標原點,并且直線與圓相交所得的弦長為4.
(1)求圓的一般方程;
(2)若從點發(fā)出的光線經(jīng)過軸反射,反射光線剛好通過圓的圓心,求反射光線所在的直線方程(用一般式表達).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下面三個類比結(jié)論:
①向量 ,有| |2= 2;類比復(fù)數(shù)z,有|z|2=z2
②實數(shù)a,b有(a+b)2=a2+2ab+b2;類比向量 , ,有( )2= 2 2
③實數(shù)a,b有a2+b2=0,則a=b=0;類比復(fù)數(shù)z1 , z2 , 有z12+z22=0,則z1=z2=0
其中類比結(jié)論正確的命題個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個問題,在火車站分別隨機調(diào)研了50名女性和50名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖
(Ⅰ)完成下列2×2列聯(lián)表:
喜歡旅游 | 不喜歡旅游 | 合計 | |
女性 | |||
男性 | |||
合計 |
(II)能否在犯錯率不超過0.025的前提下認為“喜歡旅游與性別有關(guān)”
附:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C: 的左右焦點分別是F1 , F2 , 離心率為 ,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,連接PF1 , PF2 , 設(shè)∠F1PF2的角平分線PM交C的長軸于點M(m,0),求m的取值范圍;
(3)在(2)的條件下,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點,設(shè)直線PF1 , PF2的斜率分別為k1 , k2 , 若k≠0,試證明 為定值,并求出這個定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com