【題目】已知函數(shù) 的圖像如圖所示.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),求函數(shù)的最大值和最小值.
【答案】(1);(2)最大值為,最小值為-1.
【解析】試題分析:(1)由圖可知, ,可得,再將點(diǎn)代入得,結(jié)合,可得的值,即可求出函數(shù)的解析式;(2)根據(jù)函數(shù)的周期,可求 時(shí)函數(shù)的最大值和最小值就是轉(zhuǎn)化為求函數(shù)在區(qū)間上的最大值和最小值,結(jié)合三角函數(shù)圖象,即可求出函數(shù)的最大值和最小值.
試題解析:(1)由圖可知: ,則
∴,
將點(diǎn)代入得, ,
∴, ,即,
∵
∴
∴函數(shù)的解析式為.
(2)∵函數(shù)的周期是
∴求時(shí)函數(shù)的最大值和最小值就是轉(zhuǎn)化為求函數(shù)在區(qū)間上的最大值和最小值.
由圖像可知,當(dāng)時(shí),函數(shù)取得最大值為,
當(dāng)時(shí),函數(shù)取得最小值為.
∴函數(shù)在上的最大值為,最小值為-1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域?yàn)?/span>D,若存在閉區(qū)間 ,使得函數(shù)同時(shí)滿足:
(1)在內(nèi)是單調(diào)函數(shù);
(2)在上的值域?yàn)?/span>,則稱區(qū)間為的“倍值區(qū)間”.
下列函數(shù)中存在“3倍值區(qū)間”的有_____.
①;②;③;④.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著我市經(jīng)濟(jì)的快速發(fā)展,政府對民生也越來越關(guān)注. 市區(qū)現(xiàn)有一塊近似正三角形土地ABC(如圖所示),其邊長為2百米,為了滿足市民的休閑需求,市政府?dāng)M在三個(gè)頂點(diǎn)處分別修建扇形廣場,即扇形DBE,DAG和ECF,其中、與分別相切于點(diǎn)D、E,且與無重疊,剩余部分(陰影部分)種植草坪. 設(shè)BD長為x(單位:百米),草坪面積為S(單位:百米2).
(1)試用x分別表示扇形DAG和DBE的面積,并寫出x的取值范圍;
(2)當(dāng)x為何值時(shí),草坪面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求常數(shù)的值;
(2)設(shè),證明函數(shù)在(1,+∞)上是減函數(shù);
(3)若函數(shù),且在區(qū)間[3,4]上沒有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E是A1B1上一點(diǎn),若平面EBD與平面ABCD所成銳二面角的正切值為 ,設(shè)三棱錐A﹣A1D1E外接球的直徑為a,則 = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,PA= a,AD=2a.
(1)若AE⊥PD,E為垂足,求異面直線AE與CD所成角的余弦值;
(2)求平面PAB與平面PCD所成的銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐A﹣BCD的所有棱長均為6,點(diǎn)P在AC上,且AP=2PC,過P作四面體的截面,使截面平行于直線AB和CD,則該截面的周長為( )
A.16
B.12
C.10
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓A:(x+1)2+y2=8,動(dòng)圓M經(jīng)過點(diǎn)B(1,0),且與圓A相切,O為坐標(biāo)原點(diǎn).
(Ⅰ)求動(dòng)圓圓心M的軌跡C的方程;
(Ⅱ)直線l與曲線C相切于點(diǎn)M,且l與x軸、y軸分別交于P、Q兩點(diǎn),若 =λ ,且λ∈[ ,2],求△OPQ面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場預(yù)測,投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com