【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù))和定點,是曲線的左、右焦點,以原點為極點,以軸的非負半軸為極軸且取相同單位長度建立極坐標(biāo)系.

1)求直線的極坐標(biāo)方程;

2)經(jīng)過點且與直線垂直的直線交曲線兩點,求的值.

【答案】1 2

【解析】

1)將曲線的參數(shù)方程化為普通方程,根據(jù)橢圓的性質(zhì)得出焦點坐標(biāo),由截距式寫出直線方程,再由化為極坐標(biāo)方程;

2)根據(jù)題意得出直線的參數(shù)方程,并代入橢圓方程,利用韋達定理以及直線參數(shù)方程參數(shù)的幾何意義,得出的值.

1)曲線為參數(shù)),可化為

焦點為

經(jīng)過的直線方程為,即

,

所以直線的極坐標(biāo)方程為,即.

2)由(1)知,直線的斜率為

因為,所以直線的斜率為,即傾斜角為

所以直線的參數(shù)方程為為參數(shù)),

代入曲線的方程,得,

因為點在點的兩側(cè),所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點為,過且斜率為的直線交于,兩點,

(1)求的方程;

(2)求過點,且與的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐的頂點為,底面圓心為,半徑為

(1)設(shè)圓錐的母線長為,求圓錐的體積;

(2)設(shè),是底面半徑,且為線段的中點,如圖.求異面直線所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某山區(qū)小學(xué)有名四年級學(xué)生,將全體四年級學(xué)生隨機按編號,并且按編號順序平均分成組.現(xiàn)要從中抽取名學(xué)生,各組內(nèi)抽取的編號按依次增加進行系統(tǒng)抽樣.

1)若抽出的一個號碼為,據(jù)此寫出所有被抽出學(xué)生的號碼;

2)分別統(tǒng)計這名學(xué)生的數(shù)學(xué)成績,獲得成績數(shù)據(jù)的莖葉圖如圖所示,求該樣本的方差.

(注:,方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若方程有兩個不相等的實數(shù)根,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中.

1)當(dāng)時,求的單調(diào)區(qū)間;

2)若存在,使得不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程恰有四個不同的實數(shù)根當(dāng)函數(shù)時,實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的棱長為,點分別為棱的中點,下列結(jié)論中,其中正確的個數(shù)是(

①過三點作正方體的截面,所得截面為正六邊形;

/平面;

;

④異面直線所成角的正切值為

⑤四面體的體積等于

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案