【題目】已知函數(shù)
(1)求曲線在點處的切線方程;
(2)令,討論的單調(diào)性并判斷有無極值,若有,求出極值.
【答案】(1)y=1(2)見解析
【解析】試題分析:(1)求出函數(shù)的導數(shù),分別求出, ,即可求出曲線在點處的切線方程;(2)表示出的表達式,求出的導數(shù),構(gòu)造,可證時, ; 時, ,再對分類討論,根據(jù)導數(shù),求出單調(diào)區(qū)間,并可判斷有無極值,從而求出極值.
試題解析:(1)
∴ 則切線方程為
(2)依題意得
∴
令,則
∴函數(shù)在R上單調(diào)遞增.
∵
∴時, ; 時,
當時, ,則時, ,函數(shù)在(0,+∞)單調(diào)遞增; 時, ,函數(shù)在(﹣∞,0)單調(diào)遞減.
∴時,函數(shù)取得極小值, ,無極大值
當時,令,則,
①時, 時, , ,函數(shù)單調(diào)遞增;
時, , ,函數(shù)單調(diào)遞減;
時, , ,函數(shù)單調(diào)遞增
∴當時,函數(shù)取得極小值, .當時,函數(shù)取得極大值,
②時, , 時,
∴函數(shù)在上單調(diào)遞增,無極值
③時, , 時, , ,函數(shù)單調(diào)遞增;
時, , ,函數(shù)單調(diào)遞減;
時, , ,函數(shù)單調(diào)遞增.
∴當時,函數(shù)取得極大值, ,當時,函數(shù)取得極小值,
綜上所述:當時,函數(shù)在(0,+∞)單調(diào)遞增,在(﹣∞,0)單調(diào)遞減, 極小值為﹣1﹣2a,無極大值;
當時,函數(shù)在,(0,+∞)上單調(diào)遞增,在上單調(diào)遞減, 極小值為,極大值為
當時,函數(shù)在上單調(diào)遞增,無極值
當時,函數(shù)在(﹣∞,0),上單調(diào)遞增,在上單調(diào)遞減, 極大值為.極小值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1中,點E是A1D1的中點,點F是CE的中點.
(Ⅰ)求證:平面ACE⊥平面BDD1B1;
(Ⅱ)求證:AE∥平面BDF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某廣場中間有一塊邊長為2百米的菱形狀綠化區(qū),其中是半徑為1百米的扇形,. 管理部門欲在該地從到修建小路:在弧上選一點(異于兩點),過點修建與平行的小路.問:點選擇在何處時,才能使得修建的小路與及的總長最?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(導學號:05856323)已知在△ABC中,A,B,C所對的邊分別為a,b,c,R為△ABC外接圓的半徑,若a=1, sin2B+sin2C-sin2A=sin Asin Bsin C,則R的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(導學號:05856335)[選修4-4:坐標系與參數(shù)方程]
以原點為極點,x軸的非負半軸為極軸建立極坐標系.已知A(2,π),B(2, ),圓C的極坐標方程為ρ2-6ρcos θ+8ρsin θ+21=0.F為圓C上的任意一點.
(Ⅰ)寫出圓C的參數(shù)方程;
(Ⅱ)求△ABF的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】共享單車是指企業(yè)的校園,地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是一種分時租賃模式,某共享單車企業(yè)為更好服務(wù)社會,隨機調(diào)查了100人,統(tǒng)計了這100人每日平均騎行共享單車的時間(單位:分鐘),由統(tǒng)計數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時間在三組對應(yīng)的人數(shù)依次成等差數(shù)列
(1)求頻率分布直方圖中的值.
(2)若將日平均騎行時間不少于80分鐘的用戶定義為“忠實用戶”,將日平均騎行時間少于40分鐘的用戶為“潛力用戶”,現(xiàn)從上述“忠實用戶”與“潛力用戶”的人中按分層抽樣選出5人,再從這5人中任取3人,求恰好1人為“忠實用戶”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a,使不等式f(x)≥2x-3對任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中, 為常數(shù), 為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè)曲線在處的切線為,當時,求直線在軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E,F(xiàn),且EF=,則下列結(jié)論中錯誤的是( )
A. AC⊥BE
B. EF∥平面ABCD
C. 三棱錐A-BEF的體積為定值
D. △AEF的面積與△BEF的面積相等
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com