【題目】(導(dǎo)學(xué)號:05856323)已知在△ABC中,A,B,C所對的邊分別為a,b,c,R為△ABC外接圓的半徑,若a=1, sin2B+sin2C-sin2A=sin Asin Bsin C,則R的值為( )
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線.
(1)求曲線在點(diǎn)P(2,4)處的切線方程;
(2)求曲線過點(diǎn)P(2,4)的切線方程;
(3)求斜率為1的曲線的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品按質(zhì)量標(biāo)準(zhǔn)分為,,,,五個(gè)等級.現(xiàn)從一批該產(chǎn)品隨機(jī)抽取20個(gè),對其等級進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:
等級 | |||||
頻率 |
(1)在抽取的20個(gè)產(chǎn)品中,等級為5的恰有2個(gè),求,;
(2)在(1)的條件下,從等級為3和5的所有產(chǎn)品中,任意抽取2個(gè),求抽取的2個(gè)產(chǎn)品等級恰好相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856301)已知函數(shù)f(x)=m(x-1)ex+x2(m∈R),其導(dǎo)函數(shù)為f′(x),若對任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,則實(shí)數(shù)m的取值范圍為( )
A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856312)[選修4-5:不等式選講]
已知函數(shù)f(x)=|x-m|-2|x-1|(m∈R).
(Ⅰ)當(dāng)m=3時(shí),求函數(shù)f(x)的最大值;
(Ⅱ)解關(guān)于x的不等式f(x)≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856333)
已知橢圓C: (a>b>0)的離心率為,其右焦點(diǎn)為F(c,0),第一象限的點(diǎn)A在橢圓C上,且AF⊥x軸.
(Ⅰ)若橢圓C過點(diǎn)(1,- ),求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線l:y=x-c與橢圓C交于M,N兩點(diǎn),且B(4c,yB)為直線l上的點(diǎn),證明:直線AM,AB,AN的斜率滿足kAB=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)令,討論的單調(diào)性并判斷有無極值,若有,求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方體ABCD-A′B′C′D′的外接球的體積為π,將正方體割去部分后,剩余幾何體的三視圖如圖所示,則剩余幾何體的表面積為( )
A. + B. 3+或+ C. 3+ D. +或2+
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在區(qū)間(-∞,+∞)上且以2為周期的函數(shù),對k∈Z,用Ik表示區(qū)間(2k-1,2k+1),已知當(dāng)x∈I0時(shí),f(x)=x2.求f(x)在Ik上的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com