【題目】某城市為了滿足市民出行的需要和節(jié)能環(huán)保的要求,在公共場所提供單車共享服務(wù),某部門為了對該城市共享單車進(jìn)行監(jiān)管,隨機選取了位市民對共享單車的情況逬行問卷調(diào)査,并根根據(jù)其滿意度評分值(滿分分)制作的莖葉圖如圖所示:
(1)分別計算男性打分的平均數(shù)和女性打分的中位數(shù);
(2)從打分在分以下(不含分)的市民抽取人,求有女性被抽中的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項和,且an>0,an2+an=2Sn .
(1)求數(shù)列{an}的通項公式;
(2)令bn= ,記Tn=b12b32…b2n﹣12 , 求證:Tn≥ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3x2+bx+c,不等式f(x)>0的解集為(﹣∞,﹣2)∪(0,+∞).
(1)求函數(shù)f(x)的解析式;
(2)已知函數(shù)g(x)=f(x)+mx﹣2在(2,+∞)上單調(diào)遞增,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 中,過橢圓 右焦點的直線交于兩點 , 為的中點,且 的斜率為 .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點的直線(不與坐標(biāo)軸垂直)與橢圓交于 兩點,若在線段上存在點,
使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知菱形ABCD的邊長為2,∠BAD=120°,點E,F(xiàn)分別在邊BC,DC上, =λ , =μ ,若 =1, =﹣ ,則λ+μ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是直角△ABC斜邊BC上一點,AC= DC.
(Ⅰ)若∠DAC=30°,求角B的大;
(Ⅱ)若BD=2DC,且AD= ,求DC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )離y軸最近的零點與最大值均在拋物線y=﹣ x2+ x+1上,則f(x)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,約成書于四、五世紀(jì),也就是大約一千五百年前,傳本的《孫子算經(jīng)》共三卷,卷中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”該著作中提出了一種解決問題的方法:“重置二位,左位減八,余加右位,至盡虛加一,即得.”通過對該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)是8的整數(shù)倍時,均可采用此方法求解,如圖,是解決這類問題的程序框圖,若輸入,則輸出的結(jié)果為( )
A. 120 B. 121 C. 112 D. 113
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com