【題目】已知菱形ABCD的邊長為2,∠BAD=120°,點(diǎn)E,F(xiàn)分別在邊BC,DC上, , ,若 =1, =﹣ ,則λ+μ=(
A.
B.
C.
D.

【答案】C
【解析】解:由題意可得若 =( + )( + )= + + + =2×2×cos120°+ μ =﹣2+4μ+4λ+λμ×2×2×cos120°
=4λ+4μ﹣2λμ﹣2=1,
∴4λ+4μ﹣2λμ=3 ①.
=﹣ (﹣ )= =(1﹣λ) (1﹣μ) =(1﹣λ) (1﹣μ)
=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣
即﹣λ﹣μ+λμ=﹣ ②.
由①②求得λ+μ= ,
所以答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人進(jìn)行兩種游戲,兩種游戲規(guī)則如下:游戲Ⅰ:口袋中有質(zhì)地、大小完全相同的5個(gè)球,編號(hào)分別為1,2,3,4,5,甲先摸出一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào),如果兩個(gè)編號(hào)的和為偶數(shù)算甲贏,否則算乙贏.游戲Ⅱ:口袋中有質(zhì)地、大小完全相同的6個(gè)球,其中4個(gè)白球,2個(gè)紅球,由裁判有放回的摸兩次球,即第一次摸出記下顏色后放回再摸第二次,摸出兩球同色算甲贏,摸出兩球不同色算乙贏.
(Ⅰ)求游戲Ⅰ中甲贏的概率;
(Ⅱ)求游戲Ⅱ中乙贏的概率;并比較這兩種游戲哪種游戲更公平?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角, 的對(duì)邊分別為, .已知

(1)求角的大;

2)若, ,的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,隔河看兩目標(biāo)A、B,但不能到達(dá),在岸邊選取相距 km的C、D兩點(diǎn),并測(cè)得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面內(nèi)),求兩目標(biāo)A、B之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了滿足市民出行的需要和節(jié)能環(huán)保的要求,在公共場所提供單車共享服務(wù),某部門為了對(duì)該城市共享單車進(jìn)行監(jiān)管,隨機(jī)選取了位市民對(duì)共享單車的情況逬行問卷調(diào)査,并根根據(jù)其滿意度評(píng)分值(滿分分)制作的莖葉圖如圖所示:

(1)分別計(jì)算男性打分的平均數(shù)和女性打分的中位數(shù);

(2)從打分在分以下(不含分)的市民抽取人,求有女性被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

點(diǎn)P是曲線C1:(x-2)2+y2=4上的動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸

建立極坐標(biāo)系,將點(diǎn)P繞極點(diǎn)O逆時(shí)針90得到點(diǎn)Q,設(shè)點(diǎn)Q的軌跡為曲線C2.

求曲線C1,C2的極坐標(biāo)方程;

射線= (>0)與曲線C1,C2分別交于A,B兩點(diǎn),定點(diǎn)M(2,0),MAB的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sinx的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得的圖象向左平移 個(gè)單位,得到的圖象對(duì)應(yīng)的解析式是(
A.y=sin(2x+
B.y=sin( x+
C.y=sin( x+
D.y=sin(2x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為圓的直徑,點(diǎn) 在圓上, ,矩形和圓所在的平面互相垂直,已知,

(Ⅰ)求證:平面平面;

(Ⅱ)求直線與平面所成角的大小;

(Ⅲ)當(dāng)的長為何值時(shí),二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,以為頂點(diǎn)的六面體中, 均為等邊三角形,且平面平面, 平面, , .

(1)求證: 平面

(2)求此六面體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案