【題目】已知數(shù)列{an}的各項均為正整數(shù),其前n項和為Sn , an+1= ,若S3=10,則S180=( )
A.600或900
B.900或560
C.900
D.600
【答案】D
【解析】解:(ⅰ)當(dāng)a1為奇數(shù)時,a2= ,此時若a2為奇數(shù),則a3= = , ∴S3=10=a1+ + ,解得a1=5,此時的數(shù)列{an}為5,3,2,5,3,2,….
(ⅱ)當(dāng)a1為奇數(shù)時,a2= ,此時若a2為偶數(shù),則a3=3a2﹣1= ﹣1,
∴S3=10=a1+ + ﹣1,解得a1=3,此時的數(shù)列{an}為3,2,5,3,2,5,…;
(ⅲ)當(dāng)a1為偶數(shù)時,a2=3a1﹣1,此時a2為奇數(shù),則a3= = ,∴S3=10=a1+3a1﹣1+ ,
解得a1=2,此時的數(shù)列{an}為2,5,3,2,5,3,….
上述三種情況數(shù)列{an}均為3周期數(shù)列,又60×3=180,∴S180=60×(5+3+2)=600.
故選:D.
【考點精析】本題主要考查了數(shù)列的前n項和的相關(guān)知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左右焦點分別為、,上頂點為B,O為坐標(biāo)原點,且向量與的夾角為.
求橢圓的方程;
設(shè),點P是橢圓上的動點,求的最大值和最小值;
設(shè)不經(jīng)過點B的直線l與橢圓相交于M、N兩點,且直線BM、BN的斜率之和為1,證明:直線l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:和點,P是圓上一點,線段BP的垂直平分線交CP于M點,則M點的軌跡方程為______;若直線l與M點的軌跡相交,且相交弦的中點為,則直線l的方程是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3﹣bx2+cx+b﹣a(a>0).
(1)設(shè)c=0. ①若a=b,曲線y=f(x)在x=x0處的切線過點(1,0),求x0的值;
②若a>b,求f(x)在區(qū)間[0,1]上的最大值.
(2)設(shè)f(x)在x=x1 , x=x2兩處取得極值,求證:f(x1)=x1 , f(x2)=x2不同時成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與軸,軸的正半軸分別交于A,B兩點,原點O到直線AB的距離為該橢圓的離心率為
(1)求橢圓的方程
(2)是否存在過點P(的直線與橢圓交于M,N兩個不同的點,使成立?若存在,求出的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(a+2)x+alnx,其中常數(shù)a>0.
(Ⅰ)當(dāng)a>2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)定義在D上的函數(shù)y=h(x)在點P(x0 , h(x0))處的切線方程為l:y=g(x),若 >0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點”.當(dāng)a=4時,試問y=f(x)是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+bx﹣c,f(x)在點(1,f(1))處的切線方程為x+y+4=0.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間;
(3)若在區(qū)間 內(nèi),恒有f(x)≥2lnx+kx成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 AF⊥平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.
(I)求證:AC⊥平面BCE;
(II)求三棱錐E﹣BCF的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com