【題目】已知圓,圓

(1)過的直線截圓所得的弦長為,求該直線的斜率;

(2)動圓同時平分圓與圓的周長

求動圓圓心的軌跡方程;

問動圓是否過定點,若經過,則求定點坐標;若不經過,則說明理由.

【答案】(1);(2).

【解析】

試題(1)設出直線的方程,根據(jù)勾股定理和弦長得到圓心到直線的距離為,利用點到直線的距離公式即得直線斜率的值;(2)由于圓與圓半徑相等,要使得圓都平分它們,必有,知的中垂線上,求的垂直平分線方程即得點的軌跡;根據(jù)的軌跡方程設出的坐標,由勾股定理得,從而得到圓的方程,分離參數(shù),解方程組即得圓經過的定點.

試題解析:(1)設直線為,由弦長可得圓心到直線的距離為,

到直線的距離為,化簡得:,

解得,或

(2)作出圖形可證,知的中垂線上,求得,

,作出圖形知

的方程:

,

得兩個定點為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,已知M,N分別為線段BB1,A1C的中點,MNAA1,且MA1MC.求證:

1MN平面ABC

2)平面A1MC⊥平面A1ACC1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p,;命題q:方程表示雙曲線.

⑴若命題p為真命題,求實數(shù)m的取值范圍;

⑵若命題為真命題,為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,B90°,ABBC2,PAB邊上一動點,PDBCAC于點D,現(xiàn)將PDA沿PD翻折至PDA1EA1C的中點.

1)若PAB的中點證明:DE平面PBA1

2)若平面PDA1平面PDA,且DE平面CBA1,求二面角PA1DC的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=axcosxa≠0

1)若函數(shù)fx)為單調函數(shù),求a的取值范圍;

2)若x∈[0,2π],求:當a時,函數(shù)fx)僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通項公式;

(2)若T3=21,求S3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}為等差數(shù)列,前n項和為Sn(nN*),{bn}是首項為2的等比數(shù)列,且公比大于0,b2b312,b3a42a1S1111b4.

(1){an}{bn}的通項公式;

(2)求數(shù)列{a2nbn}的前n項和(nN*)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調性;

(2)若函數(shù)恰好有2個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓Cab0)的一個焦點是(1,0),兩個焦點與短軸的一個端點構成等邊三角形.

)求橢圓C的方程;

)過點Q4,0)且不與坐標軸垂直的直線l交橢圓CAB兩點,設點A關于x軸的對稱點為A1.求證:直線A1Bx軸上一定點,并求出此定點坐標.

查看答案和解析>>

同步練習冊答案