【題目】已知圓,圓.
(1)過的直線截圓所得的弦長為,求該直線的斜率;
(2)動圓同時平分圓與圓的周長.
①求動圓圓心的軌跡方程;
②問動圓是否過定點,若經過,則求定點坐標;若不經過,則說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知M,N分別為線段BB1,A1C的中點,MN⊥AA1,且MA1=MC.求證:
(1)MN平面ABC;
(2)平面A1MC⊥平面A1ACC1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:,;命題q:方程表示雙曲線.
⑴若命題p為真命題,求實數(shù)m的取值范圍;
⑵若命題“”為真命題,“”為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=BC=2,P為AB邊上一動點,PD∥BC交AC于點D,現(xiàn)將△PDA沿PD翻折至△PDA1,E是A1C的中點.
(1)若P為AB的中點證明:DE∥平面PBA1.
(2)若平面PDA1⊥平面PDA,且DE⊥平面CBA1,求二面角P﹣A1D﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣cosx,a≠0.
(1)若函數(shù)f(x)為單調函數(shù),求a的取值范圍;
(2)若x∈[0,2π],求:當a≥時,函數(shù)f(x)僅有一個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通項公式;
(2)若T3=21,求S3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}為等差數(shù)列,前n項和為Sn(n∈N*),{bn}是首項為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通項公式;
(2)求數(shù)列{a2nbn}的前n項和(n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:(a>b>0)的一個焦點是(1,0),兩個焦點與短軸的一個端點構成等邊三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點Q(4,0)且不與坐標軸垂直的直線l交橢圓C于A、B兩點,設點A關于x軸的對稱點為A1.求證:直線A1B過x軸上一定點,并求出此定點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com