【題目】已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通項公式;
(2)若T3=21,求S3.
【答案】(1);(2)21
【解析】試題分析: 設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,運用等差數(shù)列和等比數(shù)列的通項公式,列方程解方程可得,即可得到所求通項公式;
運用等比數(shù)列的求和公式,解方程可得公比,再由等差數(shù)列的通項公式和求和,計算即可得答案。
解析:(1)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,
a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,
解得d=1,q=2或d=3,q=0(舍去),
則{bn}的通項公式為bn=2n﹣1,n∈N*;
(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,
當(dāng)q=4時,b2=4,a2=2﹣4=﹣2,
d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;
當(dāng)q=﹣5時,b2=﹣5,a2=2﹣(﹣5)=7,
d=7﹣(﹣1)=8,S3=﹣1+7+15=21.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課外實習(xí)作業(yè)小組調(diào)查了1000名職場人士,就入職兩家公司的意愿做了統(tǒng)計,得到如下數(shù)據(jù)分布:
(1)請分別計算40歲以上(含40歲)與40歲以下全體中選擇甲公司的頻率(保留兩位小數(shù)),根據(jù)計算結(jié)果,你能初步得出什么結(jié)論?
(2)若分析選擇意愿與年齡這兩個分類變量,計算得到的的觀測值為,測得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯誤的概率的上限是多少?并用統(tǒng)計學(xué)知識分析,選擇意愿與年齡變量和性別變量哪一個關(guān)聯(lián)性更大?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在空間直角坐標(biāo)系中,正四面體(各條棱均相等的三棱錐)的頂點分別在軸, 軸, 軸上.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m,n∈R+,f(x)=|x+m|+|2x-n|.
(1)當(dāng)m=n=1時,求f(x)的最小值;
(2)若f(x)的最小值為2,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1: (t為參數(shù),t≠0),其中0≤α<π.在以O為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sin θ,C3:ρ=2cos θ.
(1)求C2與C3交點的直角坐標(biāo);
(2)若C1與C2相交于點A,C1與C3相交于點B,求|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與拋物線y2=x有一個相同的焦點,且該橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點P(0,1)的直線與該橢圓交于A,B兩點,O為坐標(biāo)原點,若,求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關(guān)于t的線性回歸方程;
(Ⅱ)通過(Ⅰ)中的方程,求出y關(guān)于x的回歸方程;
(Ⅲ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達(dá)多少?
(附:對于線性回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為坐標(biāo)原點,動點在橢圓上,過作軸的垂線,垂足為,點滿足.(Ⅰ)求點的軌跡方程;
(Ⅱ)過的直線與點的軌跡交于兩點,過作與垂直的直線與點的軌跡交于兩點,求證: 為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com